(A)5 (B)1 (C)10或2 (D)5或1 查看更多

 

題目列表(包括答案和解析)

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是
{x|x≥6或x≤-4}
{x|x≥6或x≤-4}

B.(坐標系與參數方程選做題)在極坐標系中,圓ρ=-2sinθ的圓心的極坐標是
(1,
2
(1,
2

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=2
2
,BE=1,BF=2,若CE與圓相切,則線段CE的長為
7
7

查看答案和解析>>

 

 

(文)某電信部門執行的新的電話收費標準中,其中本地網營業區內的通話費標準:前3分鐘為0.20元(不足3分鐘按3分鐘計算),以后的每分鐘收0.10元(不足1分鐘按1分鐘計算。)在一次實習作業中,某同學調查了AB、CDE五人某天撥打的本地網營業區內的電話通話時間情況,其原始數據如下表所示:

 

A

B

C

D

E

第一次通話時間

3分

3分45秒

3分55秒

3分20秒

6分

第二次通話時間

0分

4分

3分40秒

4分50秒

0分

第三次通話時間

0分

0分

5分

2分

0分

應繳話費(元)

 

 

 

 

 

 (1)在上表中填寫出各人應繳的話費;

 (2)設通話時間為t分鐘,試根據上表完成下表的填寫(即這五人在這一天內的通話情況統計表):

時間段

頻數累計

頻數

頻率

累計頻率

0<t≤3

2

0.2

0.2

3<t≤4

 

 

 

 

4<t≤5

 

 

 

 

5<t≤6

 

 

 

 

合計

正 正

 

 

 

 (3)若該本地網營業區原來執行的電話收費標準是:每3分鐘為0.20元(不足3分鐘按3分鐘計算)。問這五人這天的實際平均通話費與原通話標準下算出的平均通話費相比,是增多了還是減少了?增或減了多少?

 

查看答案和解析>>


(文)某電信部門執行的新的電話收費標準中,其中本地網營業區內的通話費標準:前3分鐘為0.20元(不足3分鐘按3分鐘計算),以后的每分鐘收0.10元(不足1分鐘按1分鐘計算。)在一次實習作業中,某同學調查了A、B、CD、E五人某天撥打的本地網營業區內的電話通話時間情況,其原始數據如下表所示:

 
A
B
C
D
E
第一次通話時間
3分
3分45秒
3分55秒
3分20秒
6分
第二次通話時間
0分
4分
3分40秒
4分50秒
0分
第三次通話時間
0分
0分
5分
2分
0分
應繳話費(元)
 
 
 
 
 
 (1)在上表中填寫出各人應繳的話費;
(2)設通話時間為t分鐘,試根據上表完成下表的填寫(即這五人在這一天內的通話情況統計表):
時間段
頻數累計
頻數
頻率
累計頻率
0<t≤3

2
0.2
0.2
3<t≤4
 
 
 
 
4<t≤5
 
 
 
 
5<t≤6
 
 
 
 
合計
正 正
 
 
 
 (3)若該本地網營業區原來執行的電話收費標準是:每3分鐘為0.20元(不足3分鐘按3分鐘計算)。問這五人這天的實際平均通話費與原通話標準下算出的平均通話費相比,是增多了還是減少了?增或減了多少?

查看答案和解析>>

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區域內作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣
(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數方程為(t為參數),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數,求證:

查看答案和解析>>

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區域內作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣
(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數方程為(t為參數),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數,求證:

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2,

,????????????????????????? 3分

.??????????????????????? 6分

(Ⅱ)∵,

,∴,當且僅當時。ⅲ剑ⅲ??? 8分

,∴,???????????? 10分

,當且僅當時。ⅲ剑ⅲ

故△ABC面積取最大值為.?????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個球中數字最大者為3.

①三次取球均出現最大數字為3的概率;??????????? 1分

②三次取球中有2次出現最大數字3的概率;????? 3分

③三次取球中僅有1次出現最大數字3的概率.????? 5分

∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

(Ⅱ)在ξ=k時, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).?? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????? 10分

∴ξ的數學期望Eξ=1×+2×+3×+4× = .????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設O是AA1的中點,連接BO,則BO⊥AA1 2分

∵側面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O為原點,建立如圖空間直角坐標系,則,,,.則,,.??????????????????????????? 5分

是平面ABC的一個法向量,

,則.設A1到平面ABC的距離為d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.    9分

.????????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ),對稱軸方程為,故函數在[0,1]上為增函數,∴.???????????????????????? 2分

時,.?????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????? 4分

,∴數列是以為首項,為公比的等比數列.

,∴.?????????????? 6分

(Ⅱ)∵,∴

???????????????? 7分

可知:當時,;當時,;當時,

????????????????????? 10分

可知存在正整數或6,使得對于任意的正整數n,都有成立.??? 12分

 

21.解:(Ⅰ)設,,

,,,

,

.∵,

,∴,∴.?????????????????? 2分

則N(c,0),M(0,c),所以,

,則,

∴橢圓的方程為.?????????????????????? 4分

(Ⅱ)∵圓O與直線l相切,則,即,????????? 5分

消去y得

∵直線l與橢圓交于兩個不同點,設,

,

,,?????????????????? 7分

,

,,.????? 8分

.??????????? 9分

(或).

,則,,,

,則,

時單調遞增,????????????????????? 11分

∴S關于μ在區間單調遞增,,

.???????????????????????????? 12分

(或,

∴S關于u在區間單調遞增,???????????????????? 11分

,,.)???????????????? 12分

 

22.解:(Ⅰ)因為,,則,   1分

時,;當時,

上單調遞增;在上單調遞減,

∴函數處取得極大值.???????????????????? 2分

∵函數在區間(其中)上存在極值,

解得.??????????????????????? 3分

(Ⅱ)不等式,即為,???????????? 4分

,∴,?? 5分

,則,∵,∴,上遞增,

,從而,故上也單調遞增,

,

.??????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

,??????????????? 9分

,

,

,

………

,??????????????????????? 10分

疊加得:

.???????????????????? 12分

,

.???????????????????? 14


同步練習冊答案
久久精品免费一区二区视