15.直線:相交于第四象限.求m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系xOy中,平面區域W中的點的坐標(x,y)滿足x2+y2≤5,從區域W中隨機取點M(x,y).
(Ⅰ)若x∈Z,y∈Z,求點M位于第四象限的概率;
(Ⅱ)已知直線l:y=-x+b(b>0)與圓O:x2+y2=5相交所截得的弦長為,求y≥-x+b的概率.

查看答案和解析>>

在平面直角坐標系xOy中,平面區域W中的點的坐標(x,y)滿足x2+y2≤5,從區域W中隨機取點M(x,y).
(Ⅰ)若x∈Z,y∈Z,求點M位于第四象限的概率;
(Ⅱ)已知直線l:y=-x+b(b>0)與圓O:x2+y2=5相交所截得的弦長為
15
,求y≥-x+b的概率.

查看答案和解析>>

(2010•崇文區二模)在平面直角坐標系xOy中,平面區域W中的點的坐標(x,y)滿足x2+y2≤5,從區域W中隨機取點M(x,y).
(Ⅰ)若x∈Z,y∈Z,求點M位于第四象限的概率;
(Ⅱ)已知直線l:y=-x+b(b>0)與圓O:x2+y2=5相交所截得的弦長為
15
,求y≥-x+b的概率.

查看答案和解析>>

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,已知兩圓交于A、B兩點,過點A、B的直線分別與兩圓交于P、Q和M、N.求證:PM∥QN.
B.(矩陣與變換)
已知矩陣A的逆矩陣A-1=,求矩陣A.
C.(極坐標與參數方程)
在平面直角坐標系xOy中,過橢圓在第一象限處的一點P(x,y)分別作x軸、y軸的兩條垂線,垂足分別為M、N,求矩形PMON周長最大值時點P的坐標.
D.(不等式選講)
已知關于x的不等式|x-a|+1-x>0的解集為R,求實數a的取值范圍.

查看答案和解析>>

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,已知兩圓交于A、B兩點,過點A、B的直線分別與兩圓交于P、Q和M、N.求證:PM∥QN.
B.(矩陣與變換)
已知矩陣A的逆矩陣A-1=
10
02
,求矩陣A.
C.(極坐標與參數方程)
在平面直角坐標系xOy中,過橢圓
x2
12
+
y2
4
=1
在第一象限處的一點P(x,y)分別作x軸、y軸的兩條垂線,垂足分別為M、N,求矩形PMON周長最大值時點P的坐標.
D.(不等式選講)
已知關于x的不等式|x-a|+1-x>0的解集為R,求實數a的取值范圍.

查看答案和解析>>

1―10.CAACB  CCCDB,11.(1,1),12.(-2,3),13.5,14.D=E,15.m>-1/2

16.因為x2-y2=0表示過原點的兩條互相垂直的直線:y=x,y=-x,(x-a)2+y2=1表示圓心為C(a,0),半徑為1的動圓,本題討論方程組有實數解的問題即討論圓與直線有公共點的問題。(1)-≤a≤;(2)當-<a<-1或-1<a<1或1<a<時有四組實數解,當a=±1時,有三組實數解,當a=±時,有兩組實數解,當a<-或a>時無實數解。

17.以直線AB為x軸,線段AB的垂直平分線為y軸建立直角坐標系。設A(-5,0),則B(5,0),在平面內任取一點P(x,y),設從A運貨物到P的運費為2a元/km,則從B運到P的費用是a元/km,若P地居民選擇在A地購買此商品,則

即P點在圓C

的內部.換言之,圓C內部的居民應在A地購買,同理可推得圓C外部的應在B地購物,圓C上的居民可隨意選擇A、B兩地之一購物。

18.嘗試使用對稱法,如圖作A點關于y軸

的對稱點A1,再作A點關于y=x的對稱點A2,

在y軸和y=x上公別取點B、 C,則|BA|=|BA1|,

|AC|=|A2C|,于是△ABC的周長

|AB|+|BC|+|CA|=|A1B|+|BC|+|CA2|,

從而將問題轉化為在y軸,y=x上各取一點,使

折線A1BCA2的長度最小。B(0,-17/5)和C(-17/8,-17/8)

19.(1)配方得圓心,將心坐標消去m可得直線a:x-3y-3=0

   (2)設與直線a平行的直線c:x-3y+b=0(b≠-3),則圓心到直線a的距離為

,∵圓的半徑r=5,∴當d<r時,直線與圓相交,當d=r時,直線與圓相切,當d>r時直線與圓相離。(3)對于任一條平行于a且與圓相交的直線的直線c,由于圓心到直線c的距離都與m無關,所以弦長與m無關。

20.△ABC為直角三角形,如國圖建立直角坐標系,

則A(0,0)、B(4,0)、C(0,3),設內切圓半徑

為r,則r=1/2(|OC|+|OB|-|BC|)=1,故內切圓方程為

(x-1)2+(y-1)2=1,可設P點坐標(1+Cosα,1+Sinα)

則以PA、PB、PC為直徑的三個圓面積之和S=(10-Cosα)

當Cosα=-1時,Smax=5.5π,

當Cosα=1時, Smin=4.5π.

 


同步練習冊答案
久久精品免费一区二区视