以-k代k得 查看更多

 

題目列表(包括答案和解析)

已知函數,且 w.w.w.k.s.5.u.c.o.m                                  

(1) 試用含的代數式表示b,并求的單調區間;

(2)令,設函數處取得極值,記點M (,),N(,),P(),  ,請仔細觀察曲線在點P處的切線與線段MP的位置變化趨勢,并解釋以下問題:

(I)若對任意的m (, x),線段MP與曲線f(x)均有異于M,P的公共點,試確定t的最小值,并證明你的結論;

(II)若存在點Q(n ,f(n)), x n< m,使得線段PQ與曲線f(x)有異于P、Q的公共點,請直接寫出m的取值范圍(不必給出求解過程)w.w.w.k.s.5.u.c.o.m                                  

查看答案和解析>>

若已知直線l的斜率為k,與y軸的交點為P(0,b),代入直線方程的點斜式,可得:________,也就是________,則稱b為直線l在y軸上的________,這個方程是由直線l的________和它在y軸上的________確定的,所以叫做直線方程的________,它是點斜式方程的特殊情況,因此當直線l的傾斜角為________時,不能表示為斜截式方程,它的方程為________.

查看答案和解析>>

楊輝是中國南宋末年的一位杰出的數學家、數學教育家.他的數學著作頗多,他編著的數學書共5種21卷,在他的著作中收錄了不少現已失傳的古代數學著作中的算題和算法.他的數學研究與教育工作的重點是在計算技術方面.楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊涵了許多優美的規律.古今中外,許多數學家如賈憲、朱世杰、帕斯卡、華羅庚等都曾深入研究過,并將研究結果應用于其他工作.下圖是一個11階的楊輝三角:

 

試回答:(其中第(1)&(5)小題只需直接給出最后的結果,無需求解過程)

(1)記第i(i∈N*)行中從左到右的第j(j∈N*)個數為aij,則數列{aij}的通項公式為          ,

n階楊輝三角中共有           個數;

(2)第k行各數的和是;

(3)n階楊輝三角的所有數的和是;

(4)將第n行的所有數按從左到右的順序合并在一起得到的多位數等于;

(5)第p(p∈N*,且p≥2)行除去兩端的數字1以外的所有數都能被p整除,則整數p一定為(   )

A.奇數                B.質數              C.非偶數                D.合數

(6)在第3斜列中,前5個數依次為1、3、6、10、15;第4斜列中,第5個數為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結論:

m斜列中(從右上到左下)前k個數之和,一定等于第m+1斜列中第k個數.

試用含有m、k(mk∈N*)的數學公式表示上述結論并證明其正確性.

數學公式為                   .

證明:                        .

查看答案和解析>>

已知曲線上動點到定點與定直線的距離之比為常數

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標得到

第二問當斜率k不存在時,檢驗得不符合要求;

當直線l的斜率為k時,;,化簡得

第三問點N與點M關于X軸對稱,設,, 不妨設

由于點M在橢圓C上,所以

由已知,則

由于,故當時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

某中學舉辦安全法規知識競賽,從參賽的高一、高二學生中各抽出100人的成績作為樣本.對高一年級的100名學生的成績進行統計.并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分組,得到成績分布的頻率分布直方圖(如圖).
(1)若規定60發以上(包括60分)為合格,計算高一年級這次知識競賽的合格率;
(2)統計方法中,同一組數據常用該組區間的中點值作為代表,據此,估計高一年級這次知識競賽的學生的平均成績;
(3)若高二年級這次知識競賽的合格率為60%,由以上統計數據填寫下面2×2列聯表,并問是否有99%的把握認為“這次知識競賽的成績與年級有關系.”
高一高二合計
合格人數
不合格人數
合計
參考數據公式:由列聯表中數據計算K2的公式臨界值表
P(K2≥k0.100.050.010
k2.7063.8416.535


查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视