題目列表(包括答案和解析)
設A={x||x-1|<2},B={x|>0},則A∩B等于
A.{x|-1<x<3} B.{x|x<0或x>2}
C.{x|-1<x<0} D.{x|-1<x<0或2<x<3}
本題考查含絕對值不等式、分式不等式的解法及集合的運算.在進行集合運算時,把解集標在數軸上,借助圖形可直觀求解.
已知函數=
.
(Ⅰ)當時,求不等式
≥3的解集;
(Ⅱ) 若≤
的解集包含
,求
的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當時,
=
,
當≤2時,由
≥3得
,解得
≤1;
當2<<3時,
≥3,無解;
當≥3時,由
≥3得
≥3,解得
≥8,
∴≥3的解集為{
|
≤1或
≥8};
(Ⅱ) ≤
,
當∈[1,2]時,
=
=2,
∴,有條件得
且
,即
,
故滿足條件的的取值范圍為[-3,0]
已知關于x的不等式|ax+2|<8的解集為(-3,5),則a=__________.
本題考查含絕對值不等式的解法.
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. 、
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
已知函數其中a>0.
(I)求函數f(x)的單調區間;
(II)若函數f(x)在區間(-2,0)內恰有兩個零點,求a的取值范圍;
(III)當a=1時,設函數f(x)在區間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數g(t)在區間[-3,-1]上的最小值。
【考點定位】本小題主要考查導數的運算,利用導數研究函數的單調性、函數的零點,函數的最值等基礎知識.考查函數思想、分類討論思想.考查綜合分析和解決問題的能力.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com