距離 ⑴點到平面的距離. ⑵直線到與它平行平面的距離. ⑶兩個平行平面的距離:兩個平行平面的公垂線.公垂線段. ⑷異面直線的距離:異面直線的公垂線及其性質.公垂線段.(四)簡單多面體與球 查看更多

 

題目列表(包括答案和解析)

平面直角坐標系x0y中,動點P到直線x=-2的距離比它到點F(1,0)的距離大1.
(1)求動點P的軌跡C;
(2)求曲線C與直線x=4所圍成的區域的面積.

查看答案和解析>>

平面上點P與點F(0,1)的距離比它到直線y+2=0的距離小1
(1)求出點P的軌跡方程;
(2)過點F作點P的軌跡動弦CD,過C、D兩點分別作點P的軌跡的切線,設其交點為M,求點M的軌跡方程,并求出
FC
FD
FM2
的值.

查看答案和解析>>

平面上點P與點F(0,1)的距離比它到直線y+2=0的距離小1
(1)求出點P的軌跡方程;
(2)過點F作點P的軌跡動弦CD,過C、D兩點分別作點P的軌跡的切線,設其交點為M,求點M的軌跡方程,并求出的值.

查看答案和解析>>

平面直角坐標系內的向量都可以用一有序實數對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設直線l的傾斜角為α(α90°).在l上任取兩個不同的點,不妨設向量的方向是向上的,那么向量的坐標是().過原點作向量,則點P的坐標是(),而且直線OP的傾斜角也是α.根據正切函數的定義得

這就是《數學2》中已經得到的斜率公式.上述推導過程比《數學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關問題嗎?例如:

(1)過點,平行于向量的直線方程;

(2)向量(A,B)與直線的關系;

(3)設直線的方程分別是

,

那么,,的條件各是什么?如果它們相交,如何得到它們的夾角公式?

(4)到直線的距離公式如何推導?

查看答案和解析>>

在平面直角坐標系xOy中,點P到點F(3,0)的距離的4倍與它到直線x=2的距離的3倍之和記為d,當P點運動時,d恒等于點P的橫坐標與18之和
(Ⅰ)求點P的軌跡C;
(Ⅱ)設過點F的直線I與軌跡C相交于M,N兩點,求線段MN長度的最大值.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视