題目列表(包括答案和解析)
(本題滿分14分)
已知實數,曲線
與直線
的交點為
(異于原點
),在曲線
上取一點
,過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,接著過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,如此下去,可以得到點
,
,…,
,… . 設點
的坐標為
,
.
(Ⅰ)試用表示
,并證明
;
(Ⅱ)試證明,且
(
);
(本題滿分14分)
已知函數圖象上一點
處的切線方程為
.
(Ⅰ)求的值;
(Ⅱ)若方程在
內有兩個不等實根,求
的取值范圍(其中
為自然對數的底數);
(Ⅲ)令,若
的圖象與
軸交于
,
(其中
),
的中點為
,求證:
在
處的導數
.
(本題滿分14分)
已知曲線方程為
,過原點O作曲線
的切線
(1)求的方程;
(2)求曲線,
及
軸圍成的圖形面積S;
(本題滿分14分)
已知中心在原點,對稱軸為坐標軸的橢圓,左焦點,一個頂點坐標為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點
交橢圓于A、B兩點,當△AOB面積最大時,求直線
方程。
(本題滿分14分)
如圖,在直三棱柱中,
,
,求二面角
的大小。
1.A 2.B 3.C 4.C 5.A 6.C 7.D 8.D 9.A 10.C
11.80 12.30 13.c 14. 15.
.
三、解答題
16.解:(1)(ka+b)2=3(a-kb)2 k2++2ka?b=3(1+k2-2ka?b)
∴a?b= 當k=1時取等號. (6分)
(2)a?b=
∴時,a?b=取最大值1. (12分)
17.解:(1)由已知有xn+1-1=2(xn-1)
∴{xn-1}是以1為首項以2為公比的等比數列,又x1=2.
∴xn-1=2n-1 ∴xn=1+2n-1(n∈N*) (6分)
(2)由
又當n∈N*時,xn≥2故點(xn,yn)在射線x+y=3(xn≥2)上。 (12分)
18.解:(1)記乙勝為事件A,則P(A)=
|