(Ⅱ)求函數在上的單調增區間, 查看更多

 

題目列表(包括答案和解析)

函數f(x)的定義域為R,且滿足:
①對于任意的x,y∈R,f(x-y+1)=f(x)f(y)+f(1-x)f(1-y);
②f(x)在區間[0,1]上單調遞增.
求:(Ⅰ)f(0);(Ⅱ)不等式2f(x+1)-1≥0的解集.

查看答案和解析>>

函數f(x)=ax3+bx2的圖象過點M(1,4),在點M處的切線恰與直線x+9y+5=0垂直.
(1)求a,b的值;
(2)若f(x)在區間(m-1,m+1)上單調遞增,求m的取值范圍.

查看答案和解析>>

已知函數

(1)若,求函數上的單調增區間;

(2)若函數在區間上是單調遞減函數,求實數的取值范圍.

查看答案和解析>>

函數f(x)=ax3+bx2的圖象過點M(1,4),在點M處的切線恰與直線x+9y+5=0垂直.
(1)求a,b的值;
(2)若f(x)在區間(m-1,m+1)上單調遞增,求m的取值范圍.

查看答案和解析>>

設函數(Ⅰ)若函數上單調遞減,在區間單調遞增,求的值;

(Ⅱ)若函數上有兩個不同的極值點,求的取值范圍;

(Ⅲ)若方程有且只有三個不同的實根,求的取值范圍。

 

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當且僅當 時等號成立。)

  (當且僅當 時等號成立。)

17.解:(1)由已知得 解得.設數列的公比為,

,可得.又,可知,即,

解得. 由題意得.  .故數列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

20081226

(2)

  由

分別令的單調增區間是(開閉區間均可)。

(3) 列表如下:

0

0

1

0

―1

0

19.解:(I)由,則.

兩式相減得. 即.          

時,.∴數列是首項為4,公比為2的等比數列.

(Ⅱ)由(I)知.∴            

①當為偶數時,,

∴原不等式可化為,即.故不存在合條件的.      

②當為奇數時,.

原不等式可化為,所以,又m為奇數,所以m=1,3,5……

20.解:(1)依題意,得

   (2)令

在此區間為增函數

在此區間為減函數

在此區間為增函數

處取得極大值又

因此,當

要使得不等式

所以,存在最小的正整數k=2007,

使得不等式恒成立。……7分

  (3)(方法一)

     

又∵由(2)知為增函數,

綜上可得

(方法2)由(2)知,函數

上是減函數,在[,1]上是增函數又

所以,當時,-

又t>0,

,且函數上是增函數,

 

綜上可得

21.解:(1) 

,

函數有一個零點;當時,,函數有兩個零點。

   (2)假設存在,由①知拋物線的對稱軸為x=-1,∴ 

由②知對,都有

又因為恒成立,  ,即,即

時,,

其頂點為(-1,0)滿足條件①,又,

都有,滿足條件②!啻嬖,使同時滿足條件①、②。

   (3)令,則

,

內必有一個實根。即,

使成立。

 

 

 

 

 


同步練習冊答案
久久精品免费一区二区视