(2)是否存在.使同時滿足以下條件 查看更多

 

題目列表(包括答案和解析)

若函數f(x)同時滿足以下兩個條件:①f(x)在其定義域上是單調函數;②在f(x)的定義域內存在區間[a,b],使得f(x)在[a,b]上的值域是[a,b].則稱函數f(x)為“自強”函數.
(1)判斷函數f(x)=2x-1是否為“自強”函數?若是,則求出a,b若不是,說明理由;
(2)若函數f(x)=
2x-1
+t是“自強”函數,求實數t的取值范圍.

查看答案和解析>>

對定義在上,并且同時滿足以下兩個條件的函數稱為函數.

① 對任意的,總有;

② 當時,總有成立.

已知函數是定義在上的函數.

(1)試問函數是否為函數?并說明理由;

(2)若函數函數,求實數的值;

(3)在(2)的條件下,是否存在實數,使方程恰有兩解?若存在,求出實數的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知定義域為的函數同時滿足以下三個條件:

[1] 對任意的,總有

[2] ;

[3] 若,,且,則有成立,

并且稱為“友誼函數”,請解答下列各題:

(1)若已知為“友誼函數”,求的值;

(2)函數在區間上是否為“友誼函數”?并給出理由.

(3)已知為“友誼函數”,假定存在,使得,

求證:.

查看答案和解析>>

已知定義域為的函數同時滿足以下三個條件:

[1] 對任意的,總有;

[2] ;

[3] 若,,且,則有成立,

并且稱為“友誼函數”,請解答下列各題:

(1)若已知為“友誼函數”,求的值;

(2)函數在區間上是否為“友誼函數”?并給出理由.

(3)已知為“友誼函數”,假定存在,使得,

求證:.

查看答案和解析>>

已知定義域為的函數同時滿足以下三個條件:
(1) 對任意的,總有;(2);(3) 若,,且,則有成立,則稱為“友誼函數”,請解答下列各題:
(1)若已知為“友誼函數”,求的值;
(2)函數在區間上是否為“友誼函數”?并給出理由.
(3)已知為“友誼函數”,假定存在,使得, 求證:.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當且僅當 時等號成立。)

  (當且僅當 時等號成立。)

17.解:(1)由已知得 解得.設數列的公比為,

,可得.又,可知,即

解得. 由題意得.  .故數列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

20081226

(2)

  由

分別令,的單調增區間是(開閉區間均可)。

(3) 列表如下:

0

0

1

0

―1

0

19.解:(I)由,則.

兩式相減得. 即.          

時,.∴數列是首項為4,公比為2的等比數列.

(Ⅱ)由(I)知.∴            

①當為偶數時,,

∴原不等式可化為,即.故不存在合條件的.      

②當為奇數時,.

原不等式可化為,所以,又m為奇數,所以m=1,3,5……

20.解:(1)依題意,得

   (2)令

在此區間為增函數

在此區間為減函數

在此區間為增函數

處取得極大值又

因此,當

要使得不等式

所以,存在最小的正整數k=2007,

使得不等式恒成立!7分

  (3)(方法一)

     

又∵由(2)知為增函數,

綜上可得

(方法2)由(2)知,函數

上是減函數,在[,1]上是增函數又

所以,當時,-

又t>0,

,且函數上是增函數,

 

綜上可得

21.解:(1) 

函數有一個零點;當時,,函數有兩個零點。

   (2)假設存在,由①知拋物線的對稱軸為x=-1,∴ 

由②知對,都有

又因為恒成立,  ,即,即

,

時,

其頂點為(-1,0)滿足條件①,又,

都有,滿足條件②。∴存在,使同時滿足條件①、②。

   (3)令,則

,

內必有一個實根。即

使成立。

 

 

 

 

 

久久精品免费一区二区视