5.以橢圓的焦點為頂點.并以該橢圓的相應的頂點為焦點的雙曲線的方程為 查看更多

 

題目列表(包括答案和解析)

橢圓C的中心在坐標原點,焦點在x軸上,該橢圓經過點P(1,
3
2
)
且離心率為
1
2

(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1、F2,右頂點為A,P為橢圓C上任意一點.已知
PF1
PF2
的最大值為3,最小值為2.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于M、N兩點(M、N不是左右頂點),且以MN為直徑的圓過點A.求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

橢圓)的左、右焦點分別為、,右頂點為,為橢圓上任意一點.已知的最大值為3,最小值為2.

   (1)求橢圓的方程;

   (2)若直線與橢圓相交于、兩點(、不是左右頂點),且以為直徑的圓過點.求證:直線過定點,并求出該定點的坐標.

 

查看答案和解析>>

橢圓的離心率為,其左焦點到點的距離為
(1) 求橢圓的標準方程;
(2) 若直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

橢圓的離心率為,其左焦點到點的距離為
(1) 求橢圓的標準方程;
(2) 若直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

一、選擇題

1―5  BCAAB;6-10  BCACD ;11-12  DA

二、填空題

13、2   14、9   15、   16、②

三、解答題

17.解:

(Ⅰ)由,得,

,得.??????????????????????????????????????????????????????????????????????????????????????? 2分

所以.??????????????????????????????????????????? 5分

(Ⅱ)由正弦定理得.?????????????????????????????????????????????????? 8分

所以的面積.????????????????????????? 10分

18.解:

(1)       ,  

又橢圓的中心在原點,焦點在軸上,

橢圓的方程為:

(2)由,

19.解:

(1)連結、,則

(2)證明:連結、,則,PQ∥平面AA1B1B.

20.解:

設數列的公差為,則

,

,

.????????????????????????????????????????????????????????????????????????????????????????????? 3分

成等比數列得,

,

整理得

解得.???????????????????????????????????????????????????????????????????????????????????????????????????? 7分

時,.????????????????????????????????????????????????????????????????????????????????? 9分

時,,

于是.????????????????????????????????????????????????????? 12分

21.解:

(1)函數的圖像經過點

  

(2)函數為

   

時,,函數

函數為的定義域為:;值域為:

(3)函數的反函數為

    不等式

      不等式的解集為

22.證明:

(1)PA⊥底面ABCD  

∠BAD=90° 

平面

是斜線在平面內的射影

 AE⊥PD       BE⊥PD

(2)連結

PA⊥底面ABCD   是斜線在平面內的射影

     

(3)過點作,連結,則(或其補角)為異面直線AE與CD所成的角。由(2)知      平面

    平面      

  

  異面直線AE與CD所成的角為

 


同步練習冊答案
久久精品免费一区二区视