(A) (B)1 (C)2 (D) 查看更多

 

題目列表(包括答案和解析)

下面(a)(b)(c)(d)為四個平面圖:

(1)數出每個平面圖的頂點數、邊數、區域數(不包括圖形外面的無限區域),并將相應結果填入表:
頂點數 邊數 區域數
(a) 4 6 3
(b) 12
(c) 6
(d) 15
(2)觀察表,若記一個平面圖的頂點數、邊數、區域數分別為E、F、G,試推斷E、F、G之間的等量關系;
(3)現已知某個平面圖有2009個頂點,且圍成2009個區域,試根據以上關系確定該平面圖的邊數.

查看答案和解析>>

(A)(1)與(2)             (B)(2)與(3) 

(C)(3)與(4)             (D)(2)與(4)

 

查看答案和解析>>

精英家教網(A題)如圖,在橢圓
x2
a2
+
y2
8
=1(a>0)中,F1,F2分別是橢圓的左右焦點,B,D分別為橢圓的左右頂點,A為橢圓在第一象限內弧上的任意一點,直線AF1交y軸于點E,且點F1,F2三等分線段BD.
(1)若四邊形EBCF2為平行四邊形,求點C的坐標;
(2)設m=
S△AF1O
S△AEO
,n=
S△CF1O
S△CEO
,求m+n的取值范圍.

查看答案和解析>>

(B題)已知圓C的方程為(x-1)2+y2=9,點p為圓上一動點,定點A(-1,0),線段AP的垂直平分線與直線CP交于點M,則為點M的軌跡為(  )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

(A題)如圖,在橢圓
x2
a2
+
y2
8
=1(a>0)中,F1,F2分別是橢圓的左右焦點,B,D分別為橢圓的左右頂點,A為橢圓在第一象限內弧上的任意一點,直線AF1交y軸于點E,且點F1,F2三等分線段BD.
(1)若四邊形EBCF2為平行四邊形,求點C的坐標;
(2)設m=
S△AF1O
S△AEO
,n=
S△CF1O
S△CEO
,求m+n的取值范圍.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 時,函數的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結CBCO,則OB C的中點,連結DO。

∵在△AC中,O、D均為中點,

ADO…………………………2分

A平面BD,DO平面BD

A∥平面BD!4分

(Ⅱ)設正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C=

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標系,如圖,

設| AD | = 1∵∠DC =60°∴| C| =

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結CBOC的中點,連結DO,則     

     O.       =

A平面BD,

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設平面BC的法向量為m = ( x′ ,y′,z′)

 

      令y = -1,解得m = (,-1,0)

      二面角DBC的余弦值為cos<n , m>=

∴二面角DBC的大小為arc cos               …………12分

20、解: 解:

     (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

         由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

         a=-,b=-2,…………  3分

f′(x)=3x2-x-2=(3x+2)(x-1),函數f(x)的單調區間如下表:

(-∞,-

(-,1)

1

(1,+∞)

f′(x)

+

0

0

+

f(x)

 

極大值

極小值

所以函數f(x)的遞增區間為(-∞,-)與(1,+∞);

遞減區間為(-,1).             …………  6分

(2)f(x)=x3-x2-2x+c  x∈[-1,2],當x=-時,f(x)=+c為極大值,

而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

解得c<-1或c>2.               …………  12分

21、(I)解:方程的兩個根為,

時,,所以;

時,,,所以;

時,,所以時;

時,,,所以.      …………  4分

(II)解:

.                          …………  8分

(Ⅲ)=                       …………  12分

22、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應準線,

離心率為的橢圓

設橢圓的長軸長為2a,短軸長為2b,焦距為2c,

,∴點在x軸上,且,且3

解之得:,     ∴坐標原點為橢圓的對稱中心 

∴動點M的軌跡方程為:        …………  4分

(II)設,設直線的方程為,代入

                   ………… 5分

, 

    ………… 6分

,,

,

 

解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

(Ⅲ)設,由知, 

直線的斜率為    ………… 10分

時,;

時,,

時取“=”)或時取“=”),

             ………… 12分            

綜上所述                  ………… 14分 

 


同步練習冊答案
久久精品免费一区二区视