20 查看更多

 

題目列表(包括答案和解析)

(本小題12分)本某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對400名高一學生的一周課外體育鍛煉時間進行調查,結果如下表所示:

鍛煉時間(分鐘)

人數

40

60

80

100

80

40

(1)完成頻率分布直方圖,并估計該中學高一學生每周參加

課外體育鍛煉時間的平均值(同一組中的數據用該區間的組中值作代表);

(2)現采用分層抽樣的方法抽取容量為20的樣本,

①應抽取多少名課外體育鍛煉時間為分鐘的學生;

②若從①中被抽取的學生中隨機抽取2名,求這2名學生課外體育鍛煉時間均為分鐘的概率。

 

查看答案和解析>>

(本小題12分)如圖,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里.當甲船航行20分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里,問乙船每小時航行多少海里?

 

查看答案和解析>>

(本小題12分)某創業投資公司擬投資開發某種新能源產品,估計能獲得x∈[10,1000]萬元的投資收益.現準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.

(Ⅰ)若建立函數f(x)模型制定獎勵方案,試用數學語言表述公司對獎勵函數f(x)模型

的基本要求;

(Ⅱ)現有兩個獎勵函數模型:(i) y=;(ii) y=4lgx-3.試分析這兩個函數模型

是否符合公司要求?

 

查看答案和解析>>

(本小題12分)提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明;當時,車流速度v是車流密度的一次函數.

(Ⅰ)當時,求函數的表達式;

(Ⅱ)當車流密度為多大時,車流量(單位時間內通過橋上某觀點的車輛數,單位:輛/每小時)可以達到最大,并求出最大值(精確到1輛/小時)

 

查看答案和解析>>

(本小題12分)

一海輪以20海里/小時的速度向正東航行,它在A點時測得燈塔P在船的北偏東60°方向上,2小時后船到達B點時測得燈塔P在船的北偏東45°方向上。求:

①  船在B點時與燈塔P的距離。

②  已知以點P為圓心,55海里為半徑的圓形水城內有暗礁,那么這船繼續向正東航行,有無觸礁的危險?

 

 

 

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 時,函數的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結CBCO,則OB C的中點,連結DO。

∵在△AC中,O、D均為中點,

ADO…………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C=

DEBCE。

∵平面BC⊥平面ABC

DE⊥平面BC

EFBF,連結DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標系,如圖,

設| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結CBOC的中點,連結DO,則     

     O.       =

A平面BD,

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設平面BC的法向量為m = ( x′ ,y′,z′)

 

      令y = -1,解得m = (,-1,0)

      二面角DBC的余弦值為cos<n , m>=

∴二面角DBC的大小為arc cos               …………12分

20、解: 解:

     (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

         由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

         a=-,b=-2,…………  3分

f′(x)=3x2-x-2=(3x+2)(x-1),函數f(x)的單調區間如下表:

(-∞,-

(-,1)

1

(1,+∞)

f′(x)

+

0

0

+

f(x)

 

極大值

極小值

所以函數f(x)的遞增區間為(-∞,-)與(1,+∞);

遞減區間為(-,1).             …………  6分

(2)f(x)=x3-x2-2x+c  x∈[-1,2],當x=-時,f(x)=+c為極大值,

而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

解得c<-1或c>2.               …………  12分

21、(I)解:方程的兩個根為,

時,,所以;

時,,,所以;

時,,,所以時;

時,,,所以.      …………  4分

(II)解:

.                          …………  8分

(Ⅲ)=                       …………  12分

22、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應準線,

離心率為的橢圓

設橢圓的長軸長為2a,短軸長為2b,焦距為2c,

,,∴點在x軸上,且,且3

解之得:,     ∴坐標原點為橢圓的對稱中心 

∴動點M的軌跡方程為:        …………  4分

(II)設,設直線的方程為,代入

                   ………… 5分

, 

    ………… 6分

,,

,

 

解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

(Ⅲ)設,由知, 

直線的斜率為    ………… 10分

時,;

時,,

時取“=”)或時取“=”),

             ………… 12分            

綜上所述                  ………… 14分 

 

久久精品免费一区二区视