(或者設第1.3段運動過程的時間為t13.位移為s13=m=2.5m.有. 解得t13=1s. 查看更多

 

題目列表(包括答案和解析)

選修3-3:

(1)判斷以下說法正誤,請在相應的括號內打“×”或“√”

A. 擴散現象和布朗運動的劇烈程度都與溫度有關,所以擴散現象和布朗運動也叫做熱運動。

B. 兩個分子甲和乙相距較遠(此時它們之間的作用力可以忽略),設甲固定不動,乙逐漸向甲靠近,直到不能再靠近,在整個移動過程中前階段分子力做正功,后階段外力克服分子力做功。

C. 晶體熔化過程中,當溫度達到熔點時,吸收的熱量全部用來破壞空間點陣,增加分子勢能,而分子平均動能卻保持不變,所以晶體有固定的熔點。非晶體沒有空間點陣,熔化時不需要去破壞空間點陣,吸收的熱量主要轉化為分子的動能,不斷吸熱,溫度就不斷上升。

D. 根據熱力學第二定律可知,凡與熱現象有關的宏觀過程都具有方向性,在熱傳導中,熱量只能自發地從高溫物體傳遞給低溫物體,而不能自發地從低溫物體傳遞給高溫物體。

E. 氣體分子間的距離較大,除了相互碰撞或者跟器壁碰撞外,氣體分子幾乎不受力的作用而做勻速直線運動。分子的運動雜亂無章,在某一時刻,向各個方向運動的氣體分子數目不均等。

F. 一由不導熱的器壁做成的容器,被不導熱的隔板分成甲、乙兩室。甲室中裝有一定質量的溫度為T的氣體,乙室為真空,如下圖所示。提起隔板,讓甲室中的氣體進入乙室,若甲室中氣體的內能只與溫度有關,則提起隔板后當氣體重新達到平衡時,其溫度仍為T。

(2)在下圖所示的氣缸中封閉著溫度為100℃的空氣,一重物用繩索經滑輪與缸中活塞相連接,重物和活塞均處于平衡狀態,這時活塞離缸底的高度為10 cm,如果缸內空氣變為0℃,問:

①重物是上升還是下降?

②這時重物將從原處移動多少厘米?(設活塞與氣缸壁間無摩擦)

查看答案和解析>>

第三部分 運動學

第一講 基本知識介紹

一. 基本概念

1.  質點

2.  參照物

3.  參照系——固連于參照物上的坐標系(解題時要記住所選的是參照系,而不僅是一個點)

4.絕對運動,相對運動,牽連運動:v=v+v 

二.運動的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學教材中表述為:v=dr/dt, 表示r對t 求導數

5.以上是運動學中的基本物理量,也就是位移、位移的一階導數、位移的二階導數。可是

三階導數為什么不是呢?因為牛頓第二定律是F=ma,即直接和加速度相聯系。(a對t的導數叫“急動度”。)

6.由于以上三個量均為矢量,所以在運算中用分量表示一般比較好

三.等加速運動

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經典的物理問題:二次世界大戰中物理學家曾經研究,當大炮的位置固定,以同一速度v0沿各種角度發射,問:當飛機在哪一區域飛行之外時,不會有危險?(注:結論是這一區域為一拋物線,此拋物線是所有炮彈拋物線的包絡線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動和定軸轉動

1. 我們講過的圓周運動是平動而不是轉動 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標量,而極小的角位移是矢量

4.  同一剛體上兩點的相對速度和相對加速度 

兩點的相對距離不變,相對運動軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質點速度分別V,VB  ,VC      

求G的速度。

五.課后習題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經過時間T木筏劃到路線上標有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點,再繞過B、D,BC段水平,當以恒定水平速度v拉繩上的自由端時,A沿水平面前進,求當跨過B的兩段繩子的夾角為α時,A的運動速度。

(vA

(2)拋體運動問題的一般處理方法

  1. 平拋運動
  2. 斜拋運動
  3. 常見的處理方法

(1)將斜上拋運動分解為水平方向的勻速直線運動和豎直方向的豎直上拋運動

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運動學公式解題

(3)將斜拋運動分解為沿初速度方向的斜向上的勻速直線運動和自由落體運動兩個分運動,用矢量合成法則求解

例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠?最遠射程為多少?

(α=、 x=

第二講 運動的合成與分解、相對運動

(一)知識點點撥

  1. 力的獨立性原理:各分力作用互不影響,單獨起作用。
  2. 運動的獨立性原理:分運動之間互不影響,彼此之間滿足自己的運動規律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運動的合成分解:矢量合成分解的規律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉換:動參考系,靜參考系

相對運動:動點相對于動參考系的運動

絕對運動:動點相對于靜參考系統(通常指固定于地面的參考系)的運動

牽連運動:動參考系相對于靜參考系的運動

(5)位移合成定理:SA對地=SAB+SB對地

速度合成定理:V絕對=V相對+V牽連

加速度合成定理:a絕對=a相對+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21。角,而坐在火車里乘客看到雨滴的徑跡恰好豎直方向。求解雨滴相對于地的運動。

提示:矢量關系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據測得的數據來計算自動扶梯的臺階數?

提示:V人對梯=n1/t1

      V梯對地=n/t2

      V人對地=n/t3

V人對地= V人對梯+ V梯對地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發橫渡,如果使船頭保持跟河岸垂直的方向航行,則經10min后到達正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經過12.5min恰好到達正對岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進瀑布中,船對水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

2、模型飛機以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設風速u = 21km/h ,方向與三角形的一邊平行并與飛機起飛方向相同,試求:飛機繞三角形一周需多少時間?

3.圖為從兩列蒸汽機車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風速。

4、細桿AB長L ,兩端分別約束在x 、 y軸上運動,(1)試求桿上與A點相距aL(0< a <1)的P點運動軌跡;(2)如果vA為已知,試求P點的x 、 y向分速度vPx和vPy對桿方位角θ的函數。

(四)同步練習提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向為飛機合速度的方向(而非機頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習一類似。答案為:3

4、提示:(1)寫成參數方程后消參數θ。

(2)解法有講究:以A端為參照, 則桿上各點只繞A轉動。但鑒于桿子的實際運動情形如右圖,應有v = vAcosθ,v = vA,可知B端相對A的轉動線速度為:v + vAsinθ=  。

P點的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

第九部分 穩恒電流

第一講 基本知識介紹

第八部分《穩恒電流》包括兩大塊:一是“恒定電流”,二是“物質的導電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質導電的情形有什么區別。

應該說,第一塊的知識和高考考綱對應得比較好,深化的部分是對復雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內容,但近幾年的考試已經很少涉及,以至于很多奧賽培訓資料都把它刪掉了。鑒于在奧賽考綱中這部分內容還保留著,我們還是想粗略地介紹一下。

一、歐姆定律

1、電阻定律

a、電阻定律 R = ρ

b、金屬的電阻率 ρ = ρ0(1 + αt)

2、歐姆定律

a、外電路歐姆定律 U = IR ,順著電流方向電勢降落

b、含源電路歐姆定律

在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負極電勢降落,負極到正極電勢升高(與電流方向無關),可以得到以下關系

UA ? IR ? ε ? Ir = UB 

這就是含源電路歐姆定律。

c、閉合電路歐姆定律

在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

這就是閉合電路歐姆定律。值得注意的的是:①對于復雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯,也可以是電源和電阻組成的系統;③外電阻R可以是多個電阻的串、并聯或混聯,但不能包含電源。

二、復雜電路的計算

1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網絡,可以用一個電壓源和電阻串聯的二端網絡來等效。(事實上,也可等效為“電流源和電阻并聯的的二端網絡”——這就成了諾頓定理。)

應用方法:其等效電路的電壓源的電動勢等于網絡的開路電壓,其串聯電阻等于從端鈕看進去該網絡中所有獨立源為零值時的等效電阻。

2、基爾霍夫(克?品颍┒

a、基爾霍夫第一定律:在任一時刻流入電路中某一分節點的電流強度的總和,等于從該點流出的電流強度的總和。

例如,在圖8-2中,針對節點P ,有

I2 + I3 = I1 

基爾霍夫第一定律也被稱為“節點電流定律”,它是電荷受恒定律在電路中的具體體現。

對于基爾霍夫第一定律的理解,近來已經拓展為:流入電路中某一“包容塊”的電流強度的總和,等于從該“包容塊”流出的電流強度的總和。

b、基爾霍夫第二定律:在電路中任取一閉合回路,并規定正的繞行方向,其中電動勢的代數和,等于各部分電阻(在交流電路中為阻抗)與電流強度乘積的代數和。

例如,在圖8-2中,針對閉合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學們可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ變換

在難以看清串、并聯關系的電路中,進行“Y型?Δ型”的相互轉換常常是必要的。在圖8-3所示的電路中

☆同學們可以證明Δ→ Y的結論…

Rc = 

Rb = 

Ra = 

Y→Δ的變換稍稍復雜一些,但我們仍然可以得到

R1 = 

R2 = 

R3 = 

三、電功和電功率

1、電源

使其他形式的能量轉變為電能的裝置。如發電機、電池等。發電機是將機械能轉變為電能;干電池、蓄電池是將化學能轉變為電能;光電池是將光能轉變為電能;原子電池是將原子核放射能轉變為電能;在電子設備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。

電源電動勢定義為電源的開路電壓,內阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據此不難推出相同電源串聯、并聯,甚至不同電源串聯、并聯的時的電動勢和內阻的值。

例如,電動勢、內阻分別為ε1 、r1和ε2 、r2的電源并聯,構成的新電源的電動勢ε和內阻r分別為(☆師生共同推導…)

ε = 

r = 

2、電功、電功率

電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內電場力所作的功叫做電功率P 。

計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。

對非純電阻電路,電功和電熱的關系依據能量守恒定律求解。 

四、物質的導電性

在不同的物質中,電荷定向移動形成電流的規律并不是完全相同的。

1、金屬中的電流

即通常所謂的不含源純電阻中的電流,規律遵從“外電路歐姆定律”。

2、液體導電

能夠導電的液體叫電解液(不包括液態金屬)。電解液中離解出的正負離子導電是液體導電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。

在電解液中加電場時,在兩個電極上(或電極旁)同時產生化學反應的過程叫作“電解”。電解的結果是在兩個極板上(或電極旁)生成新的物質。

液體導電遵從法拉第電解定律——

法拉第電解第一定律:電解時在電極上析出或溶解的物質的質量和電流強度、跟通電時間成正比。表達式:m = kIt = KQ (式中Q為析出質量為m的物質所需要的電量;K為電化當量,電化當量的數值隨著被析出的物質種類而不同,某種物質的電化當量在數值上等于通過1C電量時析出的該種物質的質量,其單位為kg/C。)

法拉第電解第二定律:物質的電化當量K和它的化學當量成正比。某種物質的化學當量是該物質的摩爾質量M(克原子量)和它的化合價n的比值,即 K =  ,而F為法拉第常數,對任何物質都相同,F = 9.65×104C/mol 。

將兩個定律聯立可得:m = Q 。

3、氣體導電

氣體導電是很不容易的,它的前提是氣體中必須出現可以定向移動的離子或電子。按照“載流子”出現方式的不同,可以把氣體放電分為兩大類——

a、被激放電

在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內,通電的燈絲也會發射電子,這些“載流子”均會在電場力作用下產生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有

b、自激放電

但是,當電場足夠強,電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現象稱為二次電子發射。碰撞電離和二次電子發射使氣體中在很短的時間內出現了大量的電子和正離子,電流亦迅速增大。這種現象被稱為自激放電。自激放電不遵從歐姆定律。

常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。

4、超導現象

據金屬電阻率和溫度的關系,電阻率會隨著溫度的降低和降低。當電阻率降為零時,稱為超導現象。電阻率為零時對應的溫度稱為臨界溫度。超導現象首先是荷蘭物理學家昂尼斯發現的。

超導的應用前景是顯而易見且相當廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產業化的價值不大,為了解決這個矛盾,科學家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當今前沿科技的一個熱門領域。當前人們的研究主要是集中在合成材料方面,臨界溫度已經超過100K,當然,這個溫度距產業化的期望值還很遠。

5、半導體

半導體的電阻率界于導體和絕緣體之間,且ρ

查看答案和解析>>

在驗證機械能守恒的實驗中(實驗裝置如圖),有下列A至F六個步驟:
A.將打點計時器豎直固定在鐵架臺上
B.接通電源,再松開紙帶,讓重錘自由下落
C.取下紙帶,更換紙帶(或將紙帶翻個面),重新做實驗
D.將重錘固定在紙帶的一端,讓紙帶穿過打點計時器,用手提紙帶
E.選擇一條紙帶,用刻度尺測出重錘下落的高度h1、h2、h3、…… hn ,計算出對應的即時速度vn
F.分別算出,比較在實驗誤差范圍內是否相等.

(1)以上實驗步驟按合理的操作步驟排列應該是                                    
某個實驗小組的甲乙兩位同學按照正確的操作選得紙帶如圖示.其中O是起始點,A、B、C是打點計時器連續打下的3個點.用毫米刻度尺測得O到A、B、C各點的距離分別為hA =9.51cm、hB=12.42cm、hC=15.70cm,現利用OB段所對應的運動來驗證機械能守恒,已知當地的重力加速度g=9.80m/s2,打點計時器所用電源頻率為f=50Hz,設重錘質量為0.1kg.

(2)根據以上數據可以求得重錘在OB段所對應的運動過程中減小的重力勢能為__________J(計算結果保留三位有效數字,下同),而動能的增加量為________J.實驗發現二者并不完全相等,請指出一個可能的原因__________________________________­­­­­­­.
(3)處理數據過程中,甲乙兩位同學分別發現了一種計算B點對應時刻物體速度vB的新思路:
甲同學發現,圖中的B是除起始點外打點計時器打下的第n個點.因此可以用從O點到B點的時間nT(T是打點計時器的打點周期)計算,即vB =gnT,再依此計算動能的增量.
乙同學認為,可以利用從O點到B點的距離hB計算,即,再依此計算動能的增量.
你認為,他們新思路中(  )
A.只有甲同學的思路符合實驗要求   B.只有乙同學的思路符合實驗要求
C.兩位同學的思路都符合實驗要求    D.兩位同學的思路都不符合實驗要求
(4)在上圖紙帶基礎上,某同學又選取了多個計數點,并測出了各計數點到第一個點O的距離h,算出了各計數點對應的速度v,以h為橫軸,以為縱軸畫出的圖線應是如下圖中的          .圖線的斜率表示           

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视