設函數為奇函數.其圖象在點處的切線與直線 平行.導函數的最小值為 查看更多

 

題目列表(包括答案和解析)

(12分)設函數為奇函數,其圖象在點處的切線與直線垂直,且在x=-1處取得極值.

(Ⅰ)求a,的值;

(Ⅱ)求函數上的最大值和最小值。

查看答案和解析>>

設函數為奇函數,其圖象在點處的切線與直線 平行,導函數的最小值為  

(Ⅰ)求,,的值;

(Ⅱ)求函數的單調遞增區間,并求函數上的最大值和最小值  

查看答案和解析>>

設函數為奇函數,其圖象在點處的切線與直線垂直,且在x=-1處取得極值.

(Ⅰ)求a,,的值;

(Ⅱ)求函數上的最大值和最小值。

查看答案和解析>>

設函數為奇函數,其圖象在點處的切線與直線垂直,導函數 的最小值為

(1)求的值;

(2)求函數的單調遞增區間,并求函數上的最大值和最小值.

 

查看答案和解析>>

設函數為奇函數,其圖象在點處的切線與直線垂直,導函數的最小值為

(Ⅰ)求,的值;

(Ⅱ)求函數的單調遞增區間,并求函數上的最大值和最小值.

 

查看答案和解析>>

 

一、選擇題:

 

1

2

3

4

5

6

7

8

9

10

11

12

 

B

A

D

B

D

B

C

C

A

B

D

A

二、填空題:

13.1       14.       15.5       16.

三、解答題:

17.解:(I)設“甲射擊5次,有兩次未擊中目標”為事件A,則

      

答:甲射擊5次,有兩次未擊中目標的概率為            …………5分

   (Ⅱ)設“兩人各射擊4次,甲恰好擊中目標2次,且乙恰好擊中目標3次”為事件B,則

    答:兩人各射擊4次,甲恰好擊中目標2次,且乙恰好擊中目標3次的概率為 

    ………………10分

18.解:(I)

       ……2分

      

       ………………………………………4分

      

       ………………………………………6分

   (II)由

       得

      

      

      

       x的取值范圍是…………12分

19.解:(Ⅰ)因為四棱錐P―ABCD的底面是正方形,PA⊥底面ABCD,

則CD⊥側面PAD 

……………5分

   (Ⅱ)建立如圖所示的空間直角坐標系又PA=AD=2,

則有

同理可得

即得…………………………8分

而平面PAB的法向量可為

故所求平面AMN與PAB所成銳二面角的大小為…………12分

20.解:(Ⅰ)∵為奇函數,

………………………………………2分

的最小值為

又直線的斜率為

因此,

,,  ………………………………………5分

(Ⅱ)由(Ⅰ)知  

   ∴,列表如下:

極大

極小

   所以函數的單調增區間是…………8分

,

上的最大值是,最小值是………12分

21.解:(Ⅰ)設d、q分別為數列、數列的公差與公比.

由題可知,分別加上1,1,3后得2,2+d,4+2d

是等比數列的前三項,

……………4分

由此可得

…………………………6分

   (Ⅱ)

,

,

①―②,得

………………9分

在N*是單調遞增的,

∴滿足條件恒成立的最小整數值為……12分

22.解:(Ⅰ)∵雙曲線方程為

∴雙曲線方程為 ,又曲線C過點Q(2,),

∴雙曲線方程為    ………………5分

(Ⅱ)∵,∴M、B2、N三點共線 

,   ∴

(1)當直線垂直x軸時,不合題意 

(2)當直線不垂直x軸時,由B1(0,3),B2(0,-3),

可設直線的方程為,①

∴直線的方程為   ②

由①,②知  代入雙曲線方程得

,得,

解得 , ∴,

故直線的方程為      ………………12分

 

 

 

 

 

 

 

 


同步練習冊答案
久久精品免费一区二区视