題目列表(包括答案和解析)
已知,
是橢圓
左右焦點,它的離心率
,且被直線
所截得的線段的中點的橫坐標為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是其橢圓上的任意一點,當
為鈍角時,求
的取值范圍。
【解析】解:因為第一問中,利用橢圓的性質由得
所以橢圓方程可設為:
,然后利用
得得
橢圓方程為
第二問中,當為鈍角時,
,
得
所以
得
解:(Ⅰ)由得
所以橢圓方程可設為:
3分
得得
橢圓方程為
3分
(Ⅱ)當為鈍角時,
,
得
3分
所以
得
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓的方程;
(II)若過點(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(O為坐標原點),當
<
時,求實數
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。
第一問中,利用
第二問中,利用直線與橢圓聯系,可知得到一元二次方程中,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為
,這樣可知得到
。第二問中設直線l的方程為y=-x+m與橢圓聯立方程組可以得到
,再利用
可以結合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
,
,
為常數,離心率為
的雙曲線
:
上的動點
到兩焦點的距離之和的最小值為
,拋物線
:
的焦點與雙曲線
的一頂點重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負常數)上任意一點
向拋物線
引兩條切線,切點分別為
、
,坐標原點
恒在以
為直徑的圓內,求實數
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程
第二問中,為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
借助于根與系數的關系得到即,
是方程
的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程
(Ⅱ)設為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
,
即,
是方程
的兩個不同的根,所以
由已知易得,即
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com