題目列表(包括答案和解析)
已知函數.(
)
(1)若在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)在區間
上單調遞增,
則在區間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區間上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當,即
時,同理可知,
在區間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使在此區間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
已知,函數
(1)當時,求函數
在點(1,
)的切線方程;
(2)求函數在[-1,1]的極值;
(3)若在上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時,
又
∴ 函數在點(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當即
時
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區間
上為增函數,則
依題意,只需,即
解得 或
(舍去)
則正實數的取值范圍是(
,
)
設函數
(1)當時,求曲線
處的切線方程;
(2)當時,求
的極大值和極小值;
(3)若函數在區間
上是增函數,求實數
的取值范圍.
【解析】(1)中,先利用,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了
在區間
導數恒大于等于零,分離參數求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程!4分
(2)當
令………………6分
∴遞減,在(3,+
)遞增
∴的極大值為
…………8分
(3)
①若上單調遞增!酀M足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數
的取值范圍是
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. 、
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com