(Ⅱ) 設橢圓的左頂點為A,下頂點為B.動點P滿足. 查看更多

 

題目列表(包括答案和解析)

精英家教網設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點分別為F1F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0

(1)若過A.Q.F2三點的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M.N兩點.試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

設橢圓C1的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標原點),如圖.若拋物線C2y軸的交點為B,且經過F1,F2點.

(Ⅰ)求橢圓C1的方程;

(Ⅱ)設M(0,),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1PQ兩點,求△MPQ面積的最大值.

查看答案和解析>>

設橢圓C1的左、右焦點分別是F1,F2,下頂點為A,線段OA的中點為B(O為坐標原點),如圖.若拋物線C2:y=x2-1與y軸的交點為B,且經過F1,F2點.

(Ⅰ)求橢圓C1的方程;

(Ⅱ)設,N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P,Q兩點,求△MPQ面積的最大值.

查看答案和解析>>

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以AF2為直徑的圓與直線y=
3
x+2
相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得以PM、PN為鄰邊的平行四邊形是菱形?若存在,求實數m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

精英家教網設橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標原點),如圖.若拋物線C2:y=x2-1與y軸的交點為B,且經過F1,F2點.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設M(0,-
4
5
),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P、Q兩點,求△MPQ面積的最大值.

查看答案和解析>>

一.選擇題:DCDDA  DDBBC

解析:1:復數i的一個輻角為900,利用立方根的幾何意義知,另兩個立方根的輻角分別是900+1200與900+2400,即2100與3300,故虛部都小于0,答案為(D)。 

2:把x=3代入不等式組驗算得x=3是不等式組的解,則排除(A)、(B), 再把x=2代入不等式組驗算得x=2是不等式組的解,則排除(D),所以選(C).

3:在題設條件中的等式是關于的對稱式,因此選項在A、B為等價命題都被淘汰,若選項C正確,則有,即,從而C被淘汰,故選D。

4:“對任意的x1、x2­,當時,”實質上就是“函數單調遞減”的“偽裝”,同時還隱含了“有意義”。事實上由于時遞減,從而由此得a的取值范圍為。故選D。

5:由韋達定理知

.從而,故故選A。

6:當點A為切點時,所求的切線方程為,當A點不是切點時,所求的切線方程為故選D。

7:由已知條件可知,EF∥平面ABCD,則F到平面ABCD的距離為2, ∴VF-ABCD?32?2=6,而該多面體的體積必大于6,故選(D).

8:由二項展開式系數的性質有C+C+…+C+C=2,選B.

9:取特殊數列=3,則==10,選(B).

10:本題是考查雙曲線漸近線夾角與離心率的一個關系式,故可用特殊方程來考察。取雙曲線方程為=1,易得離心率e=,cos=,故選C。

二.填空題:11、; 12、;13、;14、,;15、,;

解析:11:因為(定值),于是,,,又,  故原式=。

12:因為正方形的面積是16,內切圓的面積是,所以豆子落入圓內的概率是

13設k = 0,因拋物線焦點坐標為把直線方程代入拋物線方程得,∴,從而。

14.(略)

15.(略)

三.解答題:

16.解:(1)∵對任意,,∴--2分

    ∵不恒等于,∴--------------------------4分

   (2)設

時,由  解得:

  解得其反函數為  ,-----------------7分

時,由  解得:

解得函數的反函數為,--------------------9分

------------------------------------------------------------------12分

 

17.解:(Ⅰ)依題意,有

,

因此,的解析式為;      …………………6分

(Ⅱ)由)得),解之得

由此可得

,

所以實數的取值范圍是.    …………………12分

 

18.(I)因為側面是圓柱的的軸截面,是圓柱底面圓周上不與、重合一個點,所以  …………………2分

又圓柱母線^平面, Ì平面,所以^,

,所以^平面

因為Ì平面,所以平面平面;…………………………………6分

(II)設圓柱的底面半徑為,母線長度為,

當點是弧的中點時,三角形的面積為,

三棱柱的體積為,三棱錐的體積為,

四棱錐的體積為,………………………………………10分

圓柱的體積為,                    ………………………………………………12分

四棱錐與圓柱的體積比為.……………………………………………14分

 

19.(Ⅰ)解:∵

        ∴

∴數列是首項為(),公比為2的等比數列,………………4分

,

,∴數列是首項為1,公差為1的等差數列

,∴…                      …………………7分

(Ⅱ)令代入得:

解得:

由此可猜想,即 …………………10分

下面用數學歸納法證明:

(1)當n=1時,等式左邊=1,右邊=,

當n=1時,等式成立,

(2)假設當n=k時,等式成立,即

當n=k+1時

 

∴當n=k+1時,等式成立,

綜上所述,存在等差數列,使得對任意的成立。              …………………14分

 

 

20.解:(Ⅰ)∵軸,∴,由橢圓的定義得:,  ……………2分

,∴,

    ∴      ………………4分

,∴所求橢圓C的方程為.  …………………6分

(Ⅱ)由(Ⅰ)知點A(-2,0),點B為(0,-1),設點P的坐標為

,,  由-4得-,

∴點P的軌跡方程為      …………………8分

設點B關于P的軌跡的對稱點為,則由軸對稱的性質可得:,

解得:,…………………10分

∵點在橢圓上,

整理得解得 …………………12分

∴點P的軌跡方程為,經檢驗都符合題設,

∴滿足條件的點P的軌跡方程為.…………………14分

 

21.解(1)         …………………1分

,

,函數有一個零點;

時,,函數有兩個零點。…………………3分

(2)令,則

 ,…………………5分

內必有一個實根。即,使成立!8分

(3)       假設存在,由①知拋物線的對稱軸為x=-1,且

     ………………10分

由②知對,都有

,                          …………………12分

時,,其頂點為(-1,0)滿足條件①,又,都有,滿足條件②。

∴存在,使同時滿足條件①、②。     …………………14分


同步練習冊答案
久久精品免费一区二区视