題目列表(包括答案和解析)
(本小題滿分12分)二次函數的圖象經過三點
.
(1)求函數的解析式(2)求函數
在區間
上的最大值和最小值
(本小題滿分12分)已知等比數列{an}中,
(Ⅰ)求數列{an}的通項公式an;
(Ⅱ)設數列{an}的前n項和為Sn,證明:;
(本小題滿分12分)已知函數,其中a為常數.
(Ⅰ)若當恒成立,求a的取值范圍;
(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.(本小題滿分12分)已知是橢圓
的兩個焦點,O為坐標原點,點
在橢圓上,且
,圓O是以
為直徑的圓,直線
與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.B 9.D 10.C
11. 12.1 13.
14.4 15.
16.當a>1時,有,∴
,∴
,∴
,∴
當0<a<1時,有
,∴
.
綜上,當a>1時,;當0<a<1時,
17.(Ⅰ)有0枚正面朝上的概率為,有1枚正面朝上的概率為:
∴
(Ⅱ)出現奇數枚正面朝上的概率為:
∴出現偶數枚正面朝上的概率為,∴概率相等.
18.(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴
平面ACFE.
(Ⅱ)當時,
平面BDF. 在梯形ABCD中,設
,連結FN,則
∵而
,∴
∴MF
AN,
∴四邊形ANFM是平行四邊形. ∴
又∵平面BDF,
平面BDF. ∴
平面BDF.
19.(Ⅰ)設橢圓方程為,則有
,∴a=6, b=3.
∴橢圓C的方程為
(Ⅱ),設點
,則
∴,
∵,∴
,∴
∴
的最小值為6.
20.(Ⅰ)設,
,
∴在
單調遞增.
(Ⅱ)當時,
,又
,
,即
;
當時,
,
,由
,得
或
.
的值域為
(Ⅲ)當x=0時,
,∴x=0為方程的解.
當x>0時,,∴
,∴
當x<0時,,∴
,∴
即看函數
與函數圖象有兩個交點時k的取值范圍,應用導數畫出
的大致圖象,∴
,∴
21.(Ⅰ)令n=1有,,∴
,∴
.
(Ⅱ)∵……① ∴當
時,有
……②
①-②有,
∴
將以上各式左右兩端分別相乘,得,∴
當n=1,2時也成立,∴.
(Ⅲ),當
時,
,
∵
∴
當時,
當時,
當時,
∴
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com