對于數列{x
n},如果存在一個正整數m,使得對任意的n(n∈N
*)都有x
n+m=x
n成立,那么就把這樣一類數列{x
n}稱作周期為m的周期數列,m的最小值稱作數列{x
n}的最小正周期,以下簡稱周期.例如當x
n=2時,{x
n}是周期為1的周期數列,當
yn=sin(n)時,{y
n}的周期為4的周期數列.
(1)設數列{a
n}滿足a
n+2=λ•a
n+1-a
n(n∈N
*),a
1+a,a
2=b(a,b不同時為0),且數列{a
n}是周期為3的周期數列,求常數λ的值;
(2)設數列{a
n}的前n項和為S
n,且4S
n=(a
n+1)
2.
①若a
n>0,試判斷數列{a
n}是否為周期數列,并說明理由;
②若a
na
n+1<0,試判斷數列{a
n}是否為周期數列,并說明理由.
(3)設數列{a
n}滿足a
n+2=-a
n+1-a
n(n∈N
*),a
1=1,a
2=2,b
n=a
n+1,數列{b
n}的前n項和S
n,試問是否存在p、q,使對任意的n∈N
*都有
p≤≤q成立,若存在,求出p、q的取值范圍;不存在,說明理由.