已知為常數且,求使成立的的范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)的定義域為(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數,則稱f(x)為“一階比增函數”;若y=
f(x)
x2
在(0,+∞)上為增函數,則稱f(x)為“二階比增函數”.我們把所有“一階比增函數”組成的集合記為Ω1,所有“二階比增函數”組成的集合記為Ω2
(Ⅰ)已知函數f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

已知二次函數f(x)=ax2+bx+c(a,b,c均為實常數,且a≠0),滿足條件f(0)=f(2)=0,且方程f(x)=2x有兩個相等的實數根.
(1)求函數f(x)的解析式;
(2)試確定一個區間P,使得f(x)在P內單調遞減且不等式f(x)≥0在P內恒成立;
(3)是否存在這樣的實數m、n,滿足m<n,使得f(x)在區間[m,n]內的取值范圍恰好是[4m,4n]?如果存在,試求出m、n的值;如果不存在,請說明理由.

查看答案和解析>>

已知常數a≠0,數列{an}前n項和為Sn,且Sn=an2-(a-1)n
(Ⅰ)求證:數列{an}為等差數列;
(Ⅱ)若an≤2n3-13n2+11n+1對任意的正整數n恒成立,求實數a的取值范圍;
(Ⅲ)若a=
1
2
,數列{cn}滿足:cn=
an
an+2012
,對于任意給定的正整數k,是否存在p,q∈N*,使得ck=cp•cq?若存在,求出p,q的值(只要寫出一組即可);若不存在說明理由.

查看答案和解析>>

已知數列{an}的前n項和為Sn,若a1=1,Sn=nan-n(n-1),n∈N*,令bn=
1
anan+1
,且數列{bn}的前項和為Tn
(1)求證:數列{an}為等差數列,并寫出an關于n的表達式;
(2)若不等式λTn
n+8
5
(λ為常數)對任意正整數n均成立,求λ的取值范圍;
(3)是否存在正整數m,n(1<m<n),使得T1,Tm,Tn成等比數列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

已知函數f(x)=
ex
x-a
(其中a為常數,且a<0).
(1)求函數f(x)的定義域及單調區間;
(2)若存在實數x∈(a,0],使得不等式f(x)≤
1
e
成立,求a的取值范圍.

查看答案和解析>>

一、選擇題:

1.D    2.C    3.A    4.A    5.B    6.A    7.B    8.C    9.B    10.C

11.B   12.C

二、選擇題;

tesoon

三、解答題;

17.(10分)

    …..3分

得,

時,;  6分   當時,       ……..10分

18.(12分)

(1)取PD的中點E,連接AE、EN

∵EN平行且等于DC,而DC平行且等于AM   

∴AMNE為平行四邊形MN∥AE  

∴MN∥平面PAD (6分)

(2)∵PA⊥平面ABCD∴CD⊥PA又

∵ABCD為矩形,∴CD⊥AD

∴CD⊥AE,AE∥MN,MN⊥CD  (3分)

∵AD⊥DC,PD⊥DC ∴∠ADP=45°

又E是斜邊的PD的中點∴AE⊥PD,

∴MN⊥PD∴MN⊥CD,∴MH⊥平面PCD.(6分)

19.(12分)

(1)

所以              …….. 6分

(2)

因為

所以,

20.(12分)

(1)由題意知

……………………2分

兩式相減得整理得:          ……..4分

是以2為首項,2為公比的等比數列,   ……. 6分

(2)由(1)知        ……..1分

   ①

  ②

①―②得   ……… 9分

…4分      ………6分

21.(12分)

(1)由題有,∵的兩個極值點,

是方程的兩個實根,

∵a>0,∴

又∵,∴,即;  ..6分

(2)令,則

,由,

上是增函數,在區間上是減函數, ∴,

,∴b的最大值是.     …..6分

22.(12分)

(1)拋物線的準線,于是,4+=5,∴p=2.

∴拋物線方程為.    (4分)

(2)∵點A的坐標是(4,4),由題意得B(0,4),M(0,2).又∵F(1,0),

,又MN⊥FA,∴,則FA的方程為

MN的方程為,解方程組得,

∴N       …..4分

(3)由題意得,圓M的圓心是點(0,2),半徑為2.

當m=4時,直線AK的方程為x=4,此時,直線AK與圓M相離.

時,直線AK的方程為即為,

圓心M(0,2)到直線AK的距離,令d>2.解得m>1,

所以,當m>1時,直線AK與圓M相離;當m=1時,直線AK與圓M相切,

當m<1時,直線AK與圓M相交.             ………. 4分

 

 

 

久久精品免费一区二区视