題目列表(包括答案和解析)
b |
a |
c |
a |
已知過點的動直線
與拋物線
相交于
兩點.當直線
的斜率是
時,
.
(1)求拋物線的方程;
(2)設線段的中垂線在
軸上的截距為
,求
的取值范圍.
【解析】(1)B,C
,當直線
的斜率是
時,
的方程為
,即
(1’)
聯立 得
,
(3’)
由已知 ,
(4’)
由韋達定理可得G方程為
(5’)
(2)設:
,BC中點坐標為
(6’)
得
由
得
(8’)
BC中垂線為 (10’)
(11’)
橢圓的左、右焦點分別為
,一條直線
經過點
與橢圓交于
兩點.
⑴求的周長;
⑵若的傾斜角為
,求
的面積.
【解析】(1)根據橢圓的定義的周長等于4a.
(2)設,則
,然后直線l的方程與橢圓方程聯立,消去x,利用韋達定理可求出所求三角形的面積.
過拋物線的對稱軸上的定點
,作直線
與拋物線相交于
兩點.
(I)試證明兩點的縱坐標之積為定值;
(II)若點是定直線
上的任一點,試探索三條直線
的斜率之間的關系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關系以及發現問題和解決問題的能力.
(1)中證明:設下證之:設直線AB的方程為: x=ty+m與y2=2px聯立得消去x得y2=2pty-2pm=0,由韋達定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數列,下證之
設點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關系以及發現問題和解決問題的能力.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com