(II)數列{}的首項b1=1.前n項和為Tn.且.求數列{}的通項公式bn. 查看更多

 

題目列表(包括答案和解析)

數列{an}的首項a1=1,前n項和為Sn,滿足關系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).
(I)設數列{an}的公比為f(t),作數列{bn},使b1=1,bn=f(
1bn-1
)
(n=2,3,4…).求bn
(II)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.

查看答案和解析>>

數列{an}的首項a1=1,前n項和為Sn,滿足關系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…)。
(I)設數列{an}的公比為f(t),作數列,使b1=1,bn=(n=2,3,4…),求bn
(II)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值。

查看答案和解析>>

已知數列{an}的首項a1=1,前n項之和Sn滿足關系式:3tSn+1-(2t+3)Sn=3t(t>0,n∈N*).
(1)求證:數列{an}是等比數列;
(2)設數列{an}的公比為f(t),數列{bn}滿足bn+1=f(
1bn
),(n∈N*)
,且b1=1.
(i)求數列{bn}的通項bn;
(ii)設Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1,求Tn

查看答案和解析>>

已知數列{an}滿足以下兩個條件:①點(an,an+1)在直線y=x+2上,②首項a1是方程3x2-4x+1=0的整數解,
(I)求數列{an}的通項公式;
(II)數列{an}的前n項和為Sn,等比數列{bn}中,b1=a1,b2=a2,數列{bn}的前n項和為Tn,解不等式Tn≤Sn

查看答案和解析>>

已知數列{an}的首項a1=1,前n項之和Sn滿足關系式:3tSn+1-(2t+3)Sn=3t(t>0,n∈N*).
(1)求證:數列{an}是等比數列;
(2)設數列{an}的公比為f(t),數列{bn}滿足,且b1=1.
(i)求數列{bn}的通項bn;
(ii)設Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1,求Tn

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個小題,每小題4分,共16分.

13.  14.  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿分12分)

       解:以DADC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標系(如圖).

       P(0,0,a),F,).………………2分

   (I)

       …………………………………………4分

文本框:     (II)設平面DEF的法向量為

       得

       取x=1,則y=-2,z=1.

       ………………………………………………6分

      

       設DB與平面DEF所成角為……………………………………8分

   (III)假設存在點G滿足題意

       因為

      

       ∴存在點G,其坐標為(,0,0),即G點為AD的中點.……………………12分

19.(本小題滿分12分)

       解:(I)ξ的所有可能取值為0,1,2,依題意得:

       …………3分

       ∴ξ的分布列為

      

ξ

0

1

2

P

       ∴Eξ=0×+1×+2×=1.…………………………………………4分

   (II)設“甲、乙都不被選中”的事件為C,則……6分

       ∴所求概率為…………………………………8分

   (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

       ………………………………10分

       ……………12分

20.(本小題滿分12分)

       解:(I)由題意知

       是等差數列.…………………………………………2分

      

       ………………………………5分

   (II)由題設知

      

       是等差數列.…………………………………………………………8分

      

       ………………………………10分

       ∴當n=1時,;

       當

       經驗證n=1時也適合上式. …………………………12分

21.(本小題滿分12分)

       解:(I)令

       則

       是單調遞減函數.……………………………………2分

       又取

       在其定義域上有唯一實根.……………………………4分

   (II)由(I)知方程有實根(或者由,易知x=0就是方程的一個根),滿足條件①.………………………………………………5分

      

       滿足條件②.故是集合M中的元素.……………………………7分

   (III)不妨設在其定義域上是增函數.

       ………………………………………………………………8分

       是其定義域上的減函數.

       .………………10分

      

       …………………………………………12分

22.(本小題滿分14分)

       解:(I)設

       由

       ………………………………………………2分

       又

      

       同理,由………………………………4分

       …………6分

   (II)方法一:當m=0時,A(2,2),B(2,-),Dn,2),En,-2).

       ∵ABED為矩形,∴直線AEBD的交點N的坐標為(………………8分

       當

      

       同理,對進行類似計算也得(*)式.………………………………12分

       即n=-2時,N為定點(0,0).

       反之,當N為定點,則由(*)式等于0,得n=-2.…………………………14分

       方法二:首先n=-2時,則D(-2,y1),A

         ①

         ②…………………………………………8分

       ①-②得

      

       …………………………………………………………10分

       反之,若N為定點N(0,0),設此時

       則

       由DN、B三點共線,   ③

       同理E、NA三點共線, ④………………12分

       ③+④得

       即-16m+8m4m=0,m(n+2)=0.

       故對任意的m都有n=-2.……………………………………………………14分

 

 

 


同步練習冊答案
久久精品免费一区二区视