則.而滿足上式. 查看更多

 

題目列表(包括答案和解析)

若數列滿足:是常數),則稱數列為二階線性遞推數列,且定義方程為數列的特征方程,方程的根稱為特征根; 數列的通項公式均可用特征根求得:

①若方程有兩相異實根,則數列通項可以寫成,(其中是待定常數);

②若方程有兩相同實根,則數列通項可以寫成,(其中是待定常數);

再利用可求得,進而求得

根據上述結論求下列問題:

(1)當,)時,求數列的通項公式;

(2)當,)時,求數列的通項公式;

(3)當,)時,記,若能被數整除,求所有滿足條件的正整數的取值集合.

查看答案和解析>>

若數列{an}滿足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常數),則稱數列{an}為二階線性遞推數列,且定義方程x2=px+q為數列{an}的特征方程,方程的根稱為特征根; 數列{an}的通項公式an均可用特征根求得:
①若方程x2=px+q有兩相異實根α,β,則數列通項可以寫成an=c1αn+c2βn,(其中c1,c2是待定常數);
②若方程x2=px+q有兩相同實根α,則數列通項可以寫成an=(c1+nc2)αn,(其中c1,c2是待定常數);
再利用a1=m1,a2=m2,可求得c1,c2,進而求得an.根據上述結論求下列問題:
(1)當a1=5,a2=13,an+2=5an+1-6an(n∈N*)時,求數列{an}的通項公式;
(2)當a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)時,求數列{an}的通項公式;
(3)當a1=1,a2=1,an+2=an+1+an(n∈N*)時,記Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被數8整除,求所有滿足條件的正整數n的取值集合.

查看答案和解析>>

若數列{an}滿足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常數),則稱數列{an}為二階線性遞推數列,且定義方程x2=px+q為數列{an}的特征方程,方程的根稱為特征根; 數列{an}的通項公式an均可用特征根求得:
①若方程x2=px+q有兩相異實根α,β,則數列通項可以寫成an=c1αn+c2βn,(其中c1,c2是待定常數);
②若方程x2=px+q有兩相同實根α,則數列通項可以寫成an=(c1+nc2)αn,(其中c1,c2是待定常數);
再利用a1=m1,a2=m2,可求得c1,c2,進而求得an.根據上述結論求下列問題:
(1)當a1=5,a2=13,an+2=5an+1-6an(n∈N*)時,求數列{an}的通項公式;
(2)當a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)時,求數列{an}的通項公式;
(3)當a1=1,a2=1,an+2=an+1+an(n∈N*)時,記Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被數8整除,求所有滿足條件的正整數n的取值集合.

查看答案和解析>>

若數列{an}滿足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常數),則稱數列{an}為二階線性遞推數列,且定義方程x2=px+q為數列{an}的特征方程,方程的根稱為特征根; 數列{an}的通項公式an均可用特征根求得:
①若方程x2=px+q有兩相異實根α,β,則數列通項可以寫成an=c1αn+c2βn,(其中c1,c2是待定常數);
②若方程x2=px+q有兩相同實根α,則數列通項可以寫成an=(c1+nc2)αn,(其中c1,c2是待定常數);
再利用a1=m1,a2=m2,可求得c1,c2,進而求得an.根據上述結論求下列問題:
(1)當a1=5,a2=13,an+2=5an+1-6an(n∈N*)時,求數列{an}的通項公式;
(2)當a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)時,求數列{an}的通項公式;
(3)當a1=1,a2=1,an+2=an+1+an(n∈N*)時,記Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被數8整除,求所有滿足條件的正整數n的取值集合.

查看答案和解析>>

若數列{an}滿足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常數),則稱數列{an}為二階線性遞推數列,且定義方程x2=px+q為數列{an}的特征方程,方程的根稱為特征根; 數列{an}的通項公式an均可用特征根求得:
①若方程x2=px+q有兩相異實根α,β,則數列通項可以寫成an=c1αn+c2βn,(其中c1,c2是待定常數);
②若方程x2=px+q有兩相同實根α,則數列通項可以寫成an=(c1+nc2)αn,(其中c1,c2是待定常數);
再利用a1=m1,a2=m2,可求得c1,c2,進而求得an.根據上述結論求下列問題:
(1)當a1=5,a2=13,an+2=5an+1-6an(n∈N*)時,求數列{an}的通項公式;
(2)當a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)時,求數列{an}的通項公式;
(3)當a1=1,a2=1,an+2=an+1+an(n∈N*)時,記Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被數8整除,求所有滿足條件的正整數n的取值集合.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视