設數列和滿足且數列是等差數列.數列是等比數列. 查看更多

 

題目列表(包括答案和解析)

設數列滿足 ,且數列是等差數列,數列是等比數列。

(I)求數列的通項公式;

(II)是否存,使,若存在,求出,若不存在,說明理由。

查看答案和解析>>

設數列{an}滿足a1=0且anan+1-2an+1+1=0(n∈N*).
(I)證明:數列{
1
1-an
}
是等差數列;
(II)設數列bn=(an-1)2,Sn是數列{bn}的前n項和,證明:
1
2
Sn<2

查看答案和解析>>

設數列{an}滿足:a1=1,an+1=3an,n∈N*
(Ⅰ)求{an}的通項公式及前n項和Sn;
(Ⅱ)已知{bn}是等差數列,Tn為前n項和,且b1=a2,b3=a1+a2+a3,求Tn

查看答案和解析>>

等差數列{an}中,a1,a2,a3分別是下表第一、二、三列中的某一個數,且a1,a2,a3中的任何兩個數不在下表的同一行.
第一列 第二列 第三列
第一行 -3 3 1
第二行 5 0 2
第三行 -1 2 0
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{bn}滿足:bn=
an+2
2n
,設數列{bn}的前n項和Sn(n∈N*),證明:Sn<2.

查看答案和解析>>

設數列{an}滿足:a1=1,an+1=3an,n∈N+
(Ⅰ)求{an}的通項公式及前n項和Sn;
(Ⅱ)已知{bn}是等差數列,Tn為前n項和,且b1=a2,b3=a1+a2+a3,求T20

查看答案和解析>>

一、選擇題  1--5 ADACB   6--10  ABACD  11―12 CB

二、填空題  13.8    14.7   15.12   16.AB

三、解答題

17.解:(Ⅰ) ,

.…………………………(4分)  

 ,  .………………………(6分)

(Ⅱ)由余弦定理,得 .………(8分)

, 

學科網(Zxxk.Com)學科網(Zxxk.Com)所以的最小值為,當且僅當時取等號.………………(12分)

學科網(Zxxk.Com)18.(Ⅰ)解法一:依據題意,因為隊伍從水路或陸路抵達災區的概率相等,則將“隊伍從水路或陸路抵達災區”視為同一個事件. 記“隊伍從水路或陸路抵達災區”為事件C,且B、C相互獨立,而且.……………………………(2分)

在5月13日恰有1支隊伍抵達災區的概率是

.……………………(6分)

解法二:在5月13日恰有1支隊伍抵達災區的概率是

.…………(6分)

(Ⅱ)依據題意,因為隊伍從水路或陸路抵達災區的概率相等,則將“隊伍從水路或陸路抵達災區”視為同一個事件. 記“隊伍從水路或陸路抵達災區”為事件C,且B、C相互獨立,而且.

設5月13日抵達災區的隊伍數為,則=0、1、2、3、4. ……………………(7分)

由已知有:;

;

;

.

答:在5月13日抵達災區的隊伍數為2時概率最大……………………(12分)

19. (I)由已知a2a1=-2, a3a2=-1, -1-(-2)=1

an+1an=(a2a1)+(n-1)?1=n-3 

n≥2時,an=( anan1)+( an1an2)+…+( a3a2)+( a2a1)+ a1

          =(n-4)+(n-5) +…+(-1)+(-2)+6 =

n=1也合適.  ∴an=  (n∈N*) ……………………3分

又b1-2=4、b2-2=2 .而  ∴bn-2=(b1-2)?()n1即bn=2+8?()n……(6分)

∴數列{an}、{bn}的通項公式為:an= ,bn=2+()n3

學科網(Zxxk.Com)(II)設

學科網(Zxxk.Com)學科網(Zxxk.Com)當k≥4時為k的增函數,-8?()k也為k的增函數,而f(4)=

學科網(Zxxk.Com)∴當k≥4時ak-bk………………10分

又f(1)=f(2)=f(3)=0   ∴不存在k, 使f(k)∈(0,)…………12分

20解法1:(Ⅰ)因為M是底面BC邊上的中點,且AB=AC,所以AMBC,

學科網(Zxxk.Com)在正三棱柱ABC-A1B1C1中,底面,  AM.所以AM平面.

(或:連結,  又,.)…………(5分)

(II)因為AM平面

M平面,NM平面

∴AMM, AMNM,

MN為二面角―AM―N的平面角. …………(7分)

,設C1N=,則CN=1-

M=,MN=

學科網(Zxxk.Com)N,得N=

MN中,由余弦定理得 

,  …(10分)

=.故=2. …    (12分)

解法2:(Ⅰ)建立如圖所示的空間直角坐標系,則(0,0,1),M(0,,0),

C(0,1,0), A (),設N (0,1,a) ,所以,

,

因為所以,同法可得.又故AM面BC.

   (II)由(Ⅰ)知??為二面角―AM―N的平面角,以下同法一.

21解(Ⅰ)由已知  

學科網(Zxxk.Com)    ∴………………(2分)

    ∴ (舍去

…(4分)

(Ⅱ)令    即的增區間為、

在區間上是增函數

     則……(8分)

(Ⅲ)令

    

 ∴上的最大值為4,最小值為0………………(10分)

、時,……………(12分)

22.解  (1)設為橢圓的左特征點,橢圓的左焦點為,可設直線的方程為.并將它代入得:,即.設,則,……(3分)

軸平分,∴.即.

,∴.……………(5分)

于是.

,即.………………(7分)

(2)對于橢圓.于是猜想:橢圓的“左特征點”是橢圓的左準線與軸的交點. ………………(9分)

學科網(Zxxk.Com)證明:設橢圓的左準線軸相交于M點,過A,B分別作的垂線,垂足分別為C,D.

據橢圓第二定義:

于是.∴,又均為銳角,∴,∴.

的平分線.故M為橢圓的“左特征點”. ………(14分)

 


同步練習冊答案
久久精品免费一区二区视