C.存在無數條與平行的直線 D.存在唯一一條與平行的直線 查看更多

 

題目列表(包括答案和解析)

直線l平面α相交,若直線l不垂直于平面α,則(  )
A.l與α內的任意一條直線不垂直
B.α內與l垂直的直線僅有1條
C.α內至少有一條直線與l平行
D.α內存在無數條直線與l異面

查看答案和解析>>

若直線l平行于平面α,則

[  ]

A.平面α內不存在與l垂直的直線

B.平面α內存在惟一的直線a⊥l

C.平面α內有無數直線與l不平行

D.平面α內有且僅有一條直線和l平行

查看答案和解析>>

若直線a平行于平面α,則

[  ]
A.

平面α內有且只有一條直線與a平行

B.

平面α內有無數條直線與a平行

C.

平面α內不存在與a垂直的直線

D.

平面α內有且只有一條與a垂直的直線

查看答案和解析>>

如果直線a∥平面β,那么下列命題正確的是( 。

查看答案和解析>>

如果直線平行于平面,則(     ).

A.平面內有且只有一直線與平行   B.平面內有無數條直線與平行

C.平面內不存在與垂直的直線     D.平面內有且僅有一條與垂直的直線

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空題

13.3    14.1   15.36π    16.

三、解答題

17.解:(1)

=………………………….2分

=.………………………………………4分

20090327

(2)要使函數為偶函數,只需

…………………………………………….8分

因為

所以.…………………………………………………………10分

18.(1)由題意知隨機變量ξ的取值為2,3,4,5,6.

,,…………….2分

 , ,

.…………………………. …………4分

所以隨機變量ξ的分布列為

2

3

4

5

6

P

…………………………………………6分

(2)隨機變量ξ的期望為

…………………………12分

19.解:(1)過點作,由正三棱柱性質知平面,

連接,則在平面上的射影.

,…………………………2分

中點,又,

所以的中點.

,

連結,則,

*為二面角

的平面角.…4分

中,

=,,

.

所以二面角的正切值為..…6分

(2)中點,

到平面距離等于到平面距離的2倍,

又由(I)知平面

平面平面,

,則平面,

.

故所求點到平面距離為.…………………………12分

20.解:(1)函數的定義域為,因為

所以 當時,;當時,.

的單調遞增區間是;的單調遞減區間是.………6分

(注: -1處寫成“閉的”亦可)

(2)由得:,

,則,

所以時,時,,

上遞減,在上遞增,…………………………10分

要使方程在區間上只有一個實數根,則必須且只需

解之得

所以實數的取值范圍.……………………12分

21.解:(1)設,

因為拋物線的焦點

.……………………………1分

,…2分

,

而點A在拋物線上,

.……………………………………4分

………………………………6分

(2)由,得,顯然直線,的斜率都存在且都不為0.

的方程為,則的方程為.

    由 ,同理可得.………8分

 

=.(當且僅當時取等號)

所以的最小值是8.…………………………………………………………12分

22.解:(1),由數列的遞推公式得

,.……………………………………………………3分

(2)

=

==.……………………5分

數列為公差是的等差數列.

由題意,令,得.……………………7分

(3)由(2)知,

所以.……………………8分

此時=

=,……………………10分

*

*

 =

>.……………………12分

 

久久精品免费一区二区视