題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:
=1:2,
:
=3:2,連結AQ,BP,設它們交于點R,若
=a,
=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足。
(1)求動點P的軌跡方程。
(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調性;
(Ⅱ)設a=3,求在區間{1,
}上值域。期中e=2.71828…是自然對數的底數。
(本小題滿分14分)
已知數列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數,n為正整數。
(Ⅰ)對任意實數λ,證明數列{an}不是等比數列;
(Ⅱ)試判斷數列{bn}是否為等比數列,并證明你的結論;
(Ⅲ)設0<a<b,Sn為數列{bn}的前n項和。是否存在實數λ,使得對任意正整數n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,
,
、
分別為
、
的中點,將
沿
折起, 使
在平面
上的射影
恰為
的中點,得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
一. 選擇題(本大題共6小題,每小題7分,共42分)
題號
1
2
3
4
5
6
答案
C
B
C
C
A
A
二. 填空題(本大題共3小題,每小題5分,共15分)
7. 0
8. 36
9.
三.解答題:解答應寫出文字說明,證明過程或演算步驟(本大題共3小題,共43分)
10.(本小題滿分14分)
解:(I)設等差數列的公差為
,則
…………2分
解得 …………4分
. …………5分
…………7分
(II)由
…………10分
…………12分
…………14分
11.(本小題滿分14分)
解法1:(Ⅰ) 取CD的中點E,連結PE、EM、EA.
∵△PCD為正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD (2分)
∵四邊形ABCD是矩形
∴△ADE、△ECM、△ABM均為直角三角形
由勾股定理可求得:EM=,AM=
,AE=3
∴
(4分)
,又
在平面ABCD上射影:
∴∠AME=90°, ∴AM⊥PM (6分)
(Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM
∴∠PME是二面角P-AM-D的平面角 (8分)
∴tan ∠PME=
∴∠PME=45°
∴二面角P-AM-D為45°; (10分)
(Ⅲ)設D點到平面PAM的距離為,連結DM,則
, ∴
而
(12分)
在中,由勾股定理可求得PM=
,所以:
∴
即點D到平面PAM的距離為
(14分)
解法2:(Ⅰ) 以D點為原點,分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標系,
依題意,可得
……2分
∴
(4分)
∴
即,∴AM⊥PM
(6分)
(Ⅱ)設,且
平面PAM,則
即
∴ ,
取,得
(8分)
取,顯然
平面ABCD, ∴
結合圖形可知,二面角P-AM-D為45°; (10分)
(Ⅲ) 設點D到平面PAM的距離為,由(Ⅱ)可知
與平面PAM垂直,則
=
即點D到平面PAM的距離為
(14分)
12.(本小題滿分15分)
解:(Ⅰ)∵軸,∴
,由橢圓的定義得:
(2分)
∵,∴
,
(4分)
又得
∴
∴,
(6分)
∴所求橢圓C的方程為.
(7分)
(Ⅱ)由(Ⅰ)知點A(-2,0),點B為(0,-1),設點P的坐標為
則,
,
由-4得-
,
∴點P的軌跡方程為.
(9分)
設點B關于P的軌跡的對稱點為,則由軸對稱的性質可得:
,解得:
,
(12分)
∵點在橢圓上,∴
,
整理得解得
或
∴點P的軌跡方程為或
,
(14分)
經檢驗和
都符合題設,
∴滿足條件的點P的軌跡方程為或
.
(15分)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com