題目列表(包括答案和解析)
(2009全國卷Ⅱ文)(本小題滿分12分)
|
|
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有成立?
若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。
解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關關系式計算,第二問利用向量坐標關系及方程的思想,借助根與系數關系解決問題,注意特殊情況的處理。
(2009全國卷Ⅱ文)(本小題滿分12分)
|
|
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有成立?
若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。
解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關關系式計算,第二問利用向量坐標關系及方程的思想,借助根與系數關系解決問題,注意特殊情況的處理。
設點為平面直角坐標系
中的一個動點(其中O為坐標原點),點P到定點
的距離比點P到
軸的距離大
。
(1)求點P的軌跡方程。
(2)若直線與點P的軌跡相交于A、B兩點,且
,求
的值。
(3)設點P的軌跡是曲線C,點是曲線C上的一點,求以Q為切點的曲線C 的切線方程。
【解析】本試題主要考查了軌跡方程的求解,利用直接法設點表示軌跡方程,并能利用所求的軌跡進行直線與圓錐曲線位置關系的運用。以及導數的幾何意義的運用的綜合試題。
設點為平面直角坐標系
中的一個動點(其中O為坐標原點),點P到定點
的距離比點P到
軸的距離大
。
(1)求點P的軌跡方程。
(2)若直線與點P的軌跡相交于A、B兩點,且
,求
的值。
(3)設點P的軌跡是曲線C,點是曲線C上的一點,求以Q為切點的曲線C 的切線方程。
【解析】本試題主要考查了軌跡方程的求解,利用直接法設點表示軌跡方程,并能利用所求的軌跡進行直線與圓錐曲線位置關系的運用。以及導數的幾何意義的運用的綜合試題。
已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關系的運用。
第一問中,可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以
,
又由于
所求橢圓C的標準方程為
第二問中,
假設存在這樣的直線,設
,MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮情形:
由,得,
,得
代入1,2式中得到范圍。
(Ⅰ) 可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以
,
又由于
所求橢圓C的標準方程為
(Ⅱ) 假設存在這樣的直線,設
,MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮情形:
由,得,
,得
……② ……………………9分
則.
代入①式得,解得………………………………………12分
代入②式得,得
.
綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com