依題意.記A(-c.0).C(.h).B(c.0).其中c為雙曲線的半焦距.c=|AB|.h是梯形的高. 查看更多

 

題目列表(包括答案和解析)

(2011•徐州模擬)在平面直角坐標系xOy中,已知圓B:(x-1)2+y2=16與點A(-1,0),P為圓B上的動點,線段PA的垂直平分線交直線PB于點R,點R的軌跡記為曲線C.
(1)求曲線C的方程;
(2)曲線C與x軸正半軸交點記為Q,過原點O且不與x軸重合的直線與曲線C的交點記為M,N,連接QM,QN,分別交直線x=t(t為常數,且t≠2)于點E,F,設E,F的縱坐標分別為y1,y2,求y1•y2的值(用t表示).

查看答案和解析>>

如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

查看答案和解析>>

在平面直角坐標系xOy中,已知圓B:(x-1)2+y2=16與點A(-1,0),P為圓B上的動點,線段PA的垂直平分線交直線PB于點R,點R的軌跡記為曲線C.
(1)求曲線C的方程;
(2)曲線C與x軸正半軸交點記為Q,過原點O且不與x軸重合的直線與曲線C的交點記為M,N,連接QM,QN,分別交直線x=t(t為常數,且t≠2)于點E,F,設E,F的縱坐標分別為y1,y2,求y1•y2的值(用t表示).

查看答案和解析>>

在平面直角坐標系xOy中,已知圓B:(x-1)2+y2=16與點A(-1,0),P為圓B上的動點,線段PA的垂直平分線交直線PB于點R,點R的軌跡記為曲線C.
(1)求曲線C的方程;
(2)曲線C與x軸正半軸交點記為Q,過原點O且不與x軸重合的直線與曲線C的交點記為M,N,連接QM,QN,分別交直線x=t(t為常數,且t≠2)于點E,F,設E,F的縱坐標分別為y1,y2,求y1•y2的值(用t表示).
精英家教網

查看答案和解析>>

在平面直角坐標系xOy中,已知圓B:(x-1)2+y2=16與點A(-1,0),P為圓B上的動點,線段PA的垂直平分線交直線PB于點R,點R的軌跡記為曲線C.
(1)求曲線C的方程;
(2)曲線C與x軸正半軸交點記為Q,過原點O且不與x軸重合的直線與曲線C的交點記為M,N,連接QM,QN,分別交直線x=t(t為常數,且t≠2)于點E,F,設E,F的縱坐標分別為y1,y2,求y1•y2的值(用t表示).

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视