題目列表(包括答案和解析)
解:因為有負根,所以在y軸左側有交點,因此
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數
數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。
解析:由題意知
當-2≤x≤1時,f(x)=x-2,
當1<x≤2時,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數,
∴f(x)的最大值為f(2)=23-2=6.
答案:C
已知曲線的參數方程是
(
是參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
:的極坐標方程是
=2,正方形ABCD的頂點都在
上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,
).
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設P為上任意一點,求
的取值范圍.
【命題意圖】本題考查了參數方程與極坐標,是容易題型.
【解析】(Ⅰ)由已知可得,
,
,
,
即A(1,),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設,令
=
,
則=
=
,
∵,∴
的取值范圍是[32,52]
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com