所以當m=-1時.AC邊最長.(這時) 查看更多

 

題目列表(包括答案和解析)

設拋物線C1 :y2=4mx(m>0)的準線與x軸交于F1,焦點為F2;以F1、F2為焦點,離心率e=
12
的橢圓C2與拋物線C1的一個交點為P.
(1)當m=1時,直線l經過橢圓C2的右焦點F2,與拋物線C1交于A1、A2,如果弦長|A1A2|等于三角形PF1F2的周長,求直線l的斜率.
(2)求最小實數m,使得三角形PF1F2的邊長是自然數.

查看答案和解析>>

精英家教網如圖,設拋物線C1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2;以F1,F2為焦點,離心率e=
12
的橢圓C2與拋物線C1在x軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運動.
(1)當m=1時,求橢圓C2的方程;
(2)當△PF1F2的邊長恰好是三個連續的自然數時,求△MPQ面積的最大值.

查看答案和解析>>

(2011•浦東新區三模)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)是否存在實數m,使得△PF1F2的邊長為連續的自然數.

查看答案和解析>>

精英家教網如圖,設拋物線c1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2,以F1、F2為焦點,離心率e=
12
的橢圓c2與拋物線c1在x軸上方的一個交點為P.
(1)當m=1時,求橢圓的方程;
(2)在(1)的條件下,直線l經過橢圓c2的右焦點F2,與拋物線c1交于A1、A2,如果以線段A1A2為直徑作圓,試判斷點P與圓的位置關系,并說明理由;
(3)是否存在實數m,使得△PF1F2的邊長是連續的自然數,若存在,求出這樣的實數m;若不存在,請說明理由.

查看答案和解析>>

精英家教網如圖,設拋物線C1:y2=4mx(m>0)的準線與x軸交地F1,焦點為F2,以F1、F2為焦點,離心率e=
12
的橢圓C2與拋物線C2在x軸上方的交點為P.
(1)當m=1時,求橢圓C2的方程;
(2)延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運動,當△PF1F2的邊長恰好是三個連續的自然數時,求△MPQ面積的最大值.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视