題目列表(包括答案和解析)
在復平面內, 是原點,向量
對應的復數是
,
=2+i。
(Ⅰ)如果點A關于實軸的對稱點為點B,求向量對應的復數
和
;
(Ⅱ)復數,
對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。
【解析】第一問中利用復數的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二問中,由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點在同一個圓上。 2分
證明:由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,為半徑的圓上
設函數f(x)=lnx,g(x)=ax+,函數f(x)的圖像與x軸的交點也在函數g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學。科。網]
(Ⅰ)求a、b的值;
(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導數為
由題意得,
第二問,由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的減函數,而F(1)=0, …………9分
∴當時,
,有
;當
時,
,有
;當x=1時,
,有
解:因為f(x)=lnx,g(x)=ax+
則其導數為
由題意得,
(11)由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的減函數,而F(1)=0, …………9分
∴當時,
,有
;當
時,
,有
;當x=1時,
,有
已知函數f(x)=sin(ωx+φ)
(0<φ<π,ω>0)過點
,函數y=f(x)圖象的兩相鄰對稱軸間的距離為
.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移個單位后,得到函數y=g(x)的圖象,求函數g(x)的單調遞減區間.
【解析】本試題主要考查了三角函數的圖像和性質的運用,第一問中利用函數y=f(x)圖象的兩相鄰對稱軸間的距離為.得
,
所以
第二問中,,
可以得到單調區間。
解:(Ⅰ)由題意得,
,…………………1分
代入點
,得
…………1分
,
∴
(Ⅱ),
的單調遞減區間為
,
.
在△ABC中,內角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面積等于,求a、b;
(Ⅱ)若,求△ABC的面積.
【解析】第一問中利用余弦定理及已知條件得又因為△ABC的面積等于
,所以
,得
聯立方程,解方程組得
.
第二問中。由于即為即
.
當時,
,
,
,
所以
當
時,得
,由正弦定理得
,聯立方程組
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分
又因為△ABC的面積等于,所以
,得
,………1分
聯立方程,解方程組得.
……………2分
(Ⅱ)由題意得,
即.
…………2分
當時,
,
,
,
……1分
所以 ………………1分
當時,得
,由正弦定理得
,聯立方程組
,解得
,
;
所以
△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的長及△ABC的面積。
【解析】本試題主要考查了余弦定理的運用。利用由題意得,
,
并且
有
得到結論。
解:(Ⅰ)由題意得,
………1分
…………1分
(Ⅱ)………………1分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com