題目列表(包括答案和解析)
已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.
已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結PF,過原點O作直線PF的垂線交直線l:x=-2于點Q.
(Ⅰ)求橢圓C的標準方程;
(
Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓O相切;(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.
已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓O相切;
(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.
已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點P的坐標為(1,1),求證:直線PQ與圓O相切;
(Ⅲ)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.
設橢圓,直線l過橢圓左焦點F1且不與x軸重合,l與橢圓交于P、Q,左準線與x軸交于K,|KF1|=2.當l與x軸垂直時,
.
(1)求橢圓T的方程;
(2)直線l繞著F1旋轉,與圓O:x2+y2=5交于A,B兩點,若|AB|∈[4,],求△F2PQ的面積S的取值范圍(F2為橢圓的右焦點).
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com