解法2:依題意得.雙曲線的半焦距. 查看更多

 

題目列表(包括答案和解析)

解析:依題意得f(x)的圖象關于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數f(x)是以4為周期的函數.由f(x)在[3,5]上是增函數與f(x)的圖象關于直線x=1對稱得,f(x)在[-3,-1]上是減函數.又函數f(x)是以4為周期的函數,因此f(x)在[1,3]上是減函數,f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點到一條漸近線的距離為
3
3
c(c為雙曲線的半焦距長),則該雙曲線的離心率為(  )

查看答案和解析>>

已知F1,F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點,以坐標原點O為圓心,以雙曲線的半焦距c為半徑的圓與雙曲線在第一象限的交點為A,與y軸正半軸的交點為B,點A在y軸上的射影為H,
OH
=(0,
3
2
c)

(1)求雙曲線的離心率;
(2)若AF1交雙曲線于點M,且
F1M
MA
,求λ.

查看答案和解析>>

已知點P為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一點,F1、F2為雙曲線的左、右焦點,若(
OP
+
OF2
)•
F2P
=0(O為坐標原點)
,且△PF1F2的面積為2ac(c為雙曲線的半焦距),則雙曲線的離心率為( 。
A、
2
+1
B、
2
2
+1
C、
3
+1
D、
3
2
+1

查看答案和解析>>

精英家教網如圖,以A1,A2為焦點的雙曲線E與半徑為c的圓O相交于C,D,C1,D1,連接CC1與OB交于點H,且有:
OH
=(3+2
3
)
HB
.其中A1,A2,B是圓O與坐標軸的交點,c為雙曲線的半焦距.
(1)當c=1時,求雙曲線E的方程;
(2)試證:對任意正實數c,雙曲線E的離心率為常數.
(3)連接A1C與雙曲線E交于F,是否存在
實數λ,使
A1F
FC
恒成立,若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视