設.則由①式得.. 查看更多

 

題目列表(包括答案和解析)

設M是由滿足下列條件的函數f(x)構成的集合:“①方程f(x)-x=0有實數根;②函數f(x)的導數f'(x)滿足0<f'(x)<1.”
(1)判斷函數f(x)=
x
3
+
cosx
4
是否是集合M中的元素,并說明理由;
(2)集合M中的元素f(x)具有下面的性質:若f(x)的定義域為D,則對于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,試用這一性質證明:方程f(x)-x=0只有一個實數根;
(3)設
1
5
是方程f(x)-x=0的實數根,求證:對于f(x)定義域中任意的x2,x3,當|x2-x1|<1,且|x3-x1|<1時,|f(x3)-f(x2)|<2.

查看答案和解析>>

設M是由滿足下列條件的函數f(x)構成的集合:“①方程f(x)-x=0有實數根; ②函數f(x)的導數f'(x)滿足0<f'(x)<1.”
(I)判斷函數f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并說明理由;
(II)集合M中的元素f(x)具有下面的性質:若f(x)的定義域為D,則對于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,試用這一性質證明:方程f(x)-x=0只有一個實數根.

查看答案和解析>>

設M是由滿足下列條件的函數f(x)構成的集合:“①方程f(x)-x=0有實數根;②函數f(x)的導數f′(x)滿足0<f′(x)<1.”

(Ⅰ)判斷函數f(x)=+是否是集合M中的元素,并說明理由;

(Ⅱ)集合M中的元素f(x)具有下面的性質:若f(x)的定義域為D,則對于任意[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,試用這一性質證明:方程f(x)-x=0只有一個實數根;

(Ⅲ)設x1是方程f(x)-x=0的實數根,求證:對于f(x)定義域中任意的x2,x3,當|x2-x1|<1,且|x3-x1|<1時,|f(x3)-f(x2)|<2.

查看答案和解析>>

M是由滿足下列條件的函數構成的集合:“①方程有實數根;②函數的導數滿足.”

(1)判斷函數是否是集合M中的元素,并說明理由;

(2)集合M中的元素具有下面的性質:若的定義域為D,則對于任意,都存在,使得等式成立”,試用這一性質證明:方程只有一個實數根;

(3)設是方程的實數根,求證:對于定義域中任意的,當,且時,.

查看答案和解析>>

設M是由滿足下列條件的函數f(x)構成的集合:“①方程f(x)-x=0有實數根;②函數f(x)的導數f(x)滿足
0<f(x)<1”
(I)證明:函數f(x)=數學公式+數學公式(0≤x<數學公式)是集合M中的元素;
(II)證明:函數f(x)=數學公式+數學公式(0≤x數學公式)具有下面的性質:對于任意[m,n]⊆[0,數學公式),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性質:若f(x)的定義域為D,則對于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.試用這一性質證明:對集合M中的任一元素f(x),方程f(x)-x=0只有一個實數根.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视