解答:(Ⅰ)易得曲線的方程為----------------2分 查看更多

 

題目列表(包括答案和解析)

本題包括高考A,B,C,D四個選題中的B,C兩個小題,每小題10分,共20分.把答案寫在答題卡相應的位置上.解答時應寫出文字說明、證明過程或演算步驟.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量
β
=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:極坐標與參數方程
在直角坐標系x0y中,直線l的參數方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數),若以直角坐標系xOy的O點為極點,Ox為極軸,且長度單位相同,建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-
π
4
)

(1)求直線l的傾斜角;
(2)若直線l與曲線l交于A、B兩點,求AB.

查看答案和解析>>

(2009•盧灣區二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
HP
PM
=0
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

 在直角坐標系中,曲線的參數方程為.在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,曲線的方程為的交點個數為        .

易得,故有2個交點。

 

查看答案和解析>>

如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足,
(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

已知函數,其中.

  (1)若處取得極值,求曲線在點處的切線方程;

  (2)討論函數的單調性;

  (3)若函數上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點

處的切線方程為:

第二問中,易得的分母大于零,

①當時, ,函數上單調遞增;

②當時,由可得,由解得

第三問,當時由(2)可知,上處取得最小值,

時由(2)可知處取得最小值,不符合題意.

綜上,函數上的最小值為2時,求的取值范圍是

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视