(Ⅱ)是否存在實數a.使得在和上單調遞增?若存在.求出實數a的取值范圍,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

定義在R上的函數f(x)滿足:f(x+y)=f(x)f(y),且當x>0時,f(x)>1.數列{an}滿足an=1-3k,f(an+1)=
(1)求f(0)的值,并證明f(x)是定義域上的增函數:
(2)求數列{an}的通項公式;
(3)設0<a<bnSn為數列{an}的前n項和,是否存在實數k,使得對任意正整數n,都有a<Sn<b?若存在,求出k的取值范圍,若不存在,請說明理由.

查看答案和解析>>

若定義在D上的函數y=f(x)滿足條件:存在實數a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常數);
②對于D內任意y0,當y0∉[a,b],總有f(y0)<C.
我們將滿足上述兩條件的函數f(x)稱為“平頂型”函數,稱C為“平頂高度”,稱b-a為“平頂寬度”.根據上述定義,解決下列問題:
(1)函數f(x)=-|x+2|-|x-3|是否為“平頂型”函數?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平頂型”函數,求出m,n的值.
(3)對于(2)中的函數f(x),若f(x)=kx在x∈[-2,+∞)上有兩個不相等的根,求實數k的取值范圍.

查看答案和解析>>

若定義在D上的函數y=f(x)滿足條件:存在實數a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常數);
②對于D內任意y0,當y0∉[a,b],總有f(y0)<C.
我們將滿足上述兩條件的函數f(x)稱為“平頂型”函數,稱C為“平頂高度”,稱b-a為“平頂寬度”.根據上述定義,解決下列問題:
(1)函數f(x)=-|x+2|-|x-3|是否為“平頂型”函數?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由.
(2)已知數學公式是“平頂型”函數,求出m,n的值.
(3)對于(2)中的函數f(x),若f(x)=kx在x∈[-2,+∞)上有兩個不相等的根,求實數k的取值范圍.

查看答案和解析>>

若定義在D上的函數y=f(x)滿足條件:存在實數a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常數);
②對于D內任意y0,當y0∉[a,b],總有f(y0)<C.
我們將滿足上述兩條件的函數f(x)稱為“平頂型”函數,稱C為“平頂高度”,稱b-a為“平頂寬度”.根據上述定義,解決下列問題:
(1)函數f(x)=-|x+2|-|x-3|是否為“平頂型”函數?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平頂型”函數,求出m,n的值.
(3)對于(2)中的函數f(x),若f(x)=kx在x∈[-2,+∞)上有兩個不相等的根,求實數k的取值范圍.

查看答案和解析>>

對于定義在D上的函數y=f(x),若同時滿足.
①存在閉區間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數);
②對于D內任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數.
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數?簡要說明理由;
(2)(理)設f(x)是(1)中的“平底型”函數,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數x的范圍;
(文)設f(x)是(1)中的“平底型”函數,若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數,求m和n滿足的條件.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视