題目列表(包括答案和解析)
(本小題滿分14分)
已知函數。
(1)證明:
(2)若數列的通項公式為
,求數列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設數列滿足:
,設
,
若(2)中的滿足對任意不小于2的正整數
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設函數
(1)求函數的單調區間;
(2)若當時,不等式
恒成立,求實數
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數,
(1)討論時,
的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數,使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設數列的前
項和為
,對任意的正整數
,都有
成立,記
。
(I)求數列的通項公式;
(II)記,設數列
的前
項和為
,求證:對任意正整數
都有
;
(III)設數列的前
項和為
。已知正實數
滿足:對任意正整數
恒成立,求
的最小值。
一、1――12 DBDCD CABAC DD
二、13.810 14. 6 15. 420 16.
三、解答題
17.解(I)由,得
由,得
又
所以
(II)由正弦定理得
所以的面積
18.解:
(I)
有6中情況
所以函數有零點的概率為
(II)對稱軸,則
函數
在區間
上是增函數的概率為
19.解:(I)證明:由已知得:
(II)證明:取AB中點H,連結GH,FH,
(由線線平行證明亦可)
(III)
20.解(I)
(II)
若
時,
是減函數,則
恒成立,得
(若用
,則必須求導得最值)
21.解:(I)由
,得
解得
或
(舍去)
(II)
22.(I)由題設
,及
,
不妨設點
,其中
,于點A 在橢圓上,有
,即
,解得
,得
直線AF1的方程為
,整理得
由題設,原點O到直線AF1的距離為
,即
將
代入上式并化簡得
,得
(II)設點D的坐標為
當
時,由
知,直線
的斜率為
,所以直線
的方程為
或
,其中,
點
,的坐標滿足方程組
將①式代入②式,得
整理得
于是
由①式得
由
知
,將③式和④式代入得
將
代入上式,整理得
當
時,直線
的方程為
,
的坐標滿足方程組
,所以
,由
知,
即
,解得
,這時,點D的坐標仍滿足
綜上,點D的軌跡方程為
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com