(I)證明:BA面PAC, 查看更多

 

題目列表(包括答案和解析)

已知球O的半徑為1,P、A、B、C四點都在球面上,PA⊥面ABC,AB=AC,∠BAC=90°.
(I)證明:BA⊥面PAC;
(II)若AP=,求二面角O-AC-B的大小.

查看答案和解析>>

已知球O的半徑為1,P、A、B、C四點都在球面上,PA⊥面ABC,AB=AC,∠BAC=90°.
(I)證明:BA⊥面PAC;
(II)若AP=,求二面角O-AC-B的大。

查看答案和解析>>

(2009•昆明模擬)已知球O的半徑為1,P、A、B、C四點都在球面上,PA⊥面ABC,AB=AC,∠BAC=90°.
(I)證明:BA⊥面PAC;
(II)若AP=
2
,求二面角O-AC-B的大。

查看答案和解析>>

如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC 把△BAC沿AC折起到△PAC的位置,使得點P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示,點E,F分別為線段PC,CD的中點.
(I) 求證:平面OEF∥平面APD;
(II)求直線CD⊥與平面POF
(III)在棱PC上是否存在一點M,使得M到點P,O,C,F四點的距離相等?請說明理由.

查看答案和解析>>

(2013•海淀區二模)如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC 把△BAC沿AC折起到△PAC的位置,使得點P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示,點E,F分別為線段PC,CD的中點.
(I) 求證:平面OEF∥平面APD;
(II)求直線CD⊥與平面POF
(III)在棱PC上是否存在一點M,使得M到點P,O,C,F四點的距離相等?請說明理由.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6ACAABB   7―12DCDACD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.40  15.    16.6

20090411

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:設等差數列

       由成等比數列,

       得

       即

       得(舍去)。

       故

       所以   6分

   (II)又

       則

       又

       故的等差數列。

       所以   12分

19.(本小題滿分12分)

       解:設事件

       則

   (I)設“賽完兩局比賽結束”為事件C,則

       則

       即

      

       因為

       所以

       因為   6分

   (II)設“賽完四局比賽結束且乙比甲多2分”為事件D,

       則

       即

      

      

       =     12分

20.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點,

       連結O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

       同上,   8分

      

      

      

       設面OAC的法向量為

      

       得

       故

       所以二面角O―AC―B的大小為   12分

 

 

21.(本小題滿分12分)

   (I)解:當

       故   1分

       因為   當

       當

       故上單調遞減。   5分

   (II)解:由題意知上恒成立,

       即上恒成立。   7分

       令

       因為   9分       

       故上恒成立等價于

          11分

       解得   12分

22.(本小題滿分12分)

       解:依題意設拋物線方程為,

       直線

       則的方程為

      

       因為

       即

       故

   (I)若

      

       故點B的坐標為

       所以直線   5分

   (II)聯立

      

       則

       又   7分

       故   9分

       因為成等差數列,

       所以

       故

       將代入上式得

       。   12分

 

 

 

 

 


同步練習冊答案
久久精品免费一区二区视