4.若不經過第一象限的直線等于 查看更多

 

題目列表(包括答案和解析)

若不經過第一象限的直線x+my+3=0與圓x2+y2+2x=0相切,則m等于( 。
A.
3
3
B.-
3
3
C.
3
D.-
3

查看答案和解析>>

若不經過第一象限的直線x+my+3=0與圓x2+y2+2x=0相切,則m等于( )
A.
B.-
C.
D.-

查看答案和解析>>

(2009•昆明模擬)若不經過第一象限的直線x+my+3=0與圓x2+y2+2x=0相切,則m等于( 。

查看答案和解析>>

(本小題滿分12分)

已知點,過點作拋物線的切線,切點在第二象限,如圖.

(Ⅰ)求切點的縱坐標;

(Ⅱ)若離心率為的橢圓  恰好經過切點,設切線交橢圓的另一點為,記切線的斜率分別為,若,求橢圓方程.

21(本小題滿分12分)

已知函數 .

(1)討論函數的單調性;

(2)當時,恒成立,求實數的取值范圍;

(3)證明:.

22.選修4-1:幾何證明選講

如圖,是圓的直徑,是弦,的平分線交圓于點,,交的延長線于點,于點。

(1)求證:是圓的切線;

(2)若,求的值。

23.選修4—4:坐標系與參數方程

在平面直角坐標系中,直線過點且傾斜角為,以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線與曲線相交于兩點;

(1)若,求直線的傾斜角的取值范圍;

(2)求弦最短時直線的參數方程。

24. 選修4-5 不等式選講

已知函數

   (I)試求的值域;

   (II)設,若對,恒有成立,試求實數a的取值范圍。

查看答案和解析>>

(本題滿分15分)已知二次函數的圖象經過點,是偶函數,函數的圖象與直線相切,且切點位于第一象限.

(Ⅰ)求函數的解析式;

(Ⅱ)若對一切,不等式恒成立,求實數的取值范圍;

(Ⅲ)若關于x的方程有三個不同的實數解,求實數k的值.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6AABCBD   7―12ACDCBD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.-8  15.    16.6

三、解答題:本大題共6小題,共70分,解答應寫出文字說明,證明過程或演算步驟。

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:當

       故   1分

       因為   當

       當

       故上單調遞減。   5分

   (II)解:由題意知上恒成立,

       即上恒成立。   7分

       令

       因為   9分       

       故上恒成立等價于

          11分

       解得   12分

19.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點,

       連結O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

       同上,   8分

      

      

      

       設面OAC的法向量為

      

       得

       故

       所以二面角O―AC―B的大小為   12分

20.(本小題滿分12分)

   (I)解:設次將球擊破,

    則   5分

   (II)解:對于方案甲,積分卡剩余點數

       由已知可得

      

      

      

       故

       故   8分

       對于方案乙,積分卡剩余點數

       由已知可得

      

      

      

      

       故

       故   11分

       故

       所以選擇方案甲積分卡剩余點數最多     12分

21.(本小題滿分12分)

       解:依題意設拋物線方程為

       直線

       則的方程為

      

       因為

       即

       故

   (I)若

      

       故點B的坐標為

       所以直線   5分

   (II)聯立

      

       則

       又   7分

       故   9分

       因為成等差數列,

       所以

       故

       將代入上式得

       。   12分

22.(本小題滿分12分)

   (I)解:

       又

       故   2分

       而

       當

       故為增函數。

       所以的最小值為0   4分

   (II)用數學歸納法證明:

       ①當

       又

       所以為增函數,即

       則

       所以成立       6分

       ②假設當成立,

       那么當

       又為增函數,

      

       則成立。

       由①②知,成立   8分

   (III)證明:由(II)

       得

       故   10分

       則

      

       所以成立   12分

 

 

 

 

 


同步練習冊答案
久久精品免费一区二区视