5.設函數.則其反函數的圖象是 查看更多

 

題目列表(包括答案和解析)

設函數f(x)=2+
x
(x≥0),則其反函數f-1(x)的圖象是( 。
A、精英家教網
B、精英家教網
C、精英家教網
D、精英家教網

查看答案和解析>>

設函數f(x)的定義域為D,若存在x∈D,使f(x)=x成立,則稱以(x,x)為坐標的點為函數f(x)圖象上的不動點.
(1)若函數f(x)=圖象上有兩個關于原點對稱的不動點,求a,b應滿足的條件;
(2)在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A、B,點M為函數圖象上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(3)下述命題“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點的有奇數個”是否正確?若正確,給出證明,并舉一例;若不正確,請舉一反例說明.

查看答案和解析>>

設函數f(x)=2+(x≥0),則其反函數f-1(x)的圖象是( )
A.
B.
C.
D.

查看答案和解析>>

設函數f(x)=2+數學公式(x≥0),則其反函數f-1(x)的圖象是


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

給出下列四個命題:
①“向量的夾角為銳角”的充要條件是“>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有;
③設f(x)與g(x)是定義在同一區間[a,b]上的兩個函數,若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“密切函數”,區間[a,b]稱為“密切區間”。若f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數”,則其“密切區間”可以是[2,3];
④記函數y=f(x)的反函數為y=f-1(x),要得到y=f-1(1-x)的圖象,可以先將y=f(x)的圖象關于直線y=x做對稱變換,再將所得的圖象關于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y=f-1(1-x)的圖象;
其中真命題的序號是(    )。(請寫出所有真命題的序號)

查看答案和解析>>

1.C   2.D   3.D   4.B   5.C   6.C   7.D   8.B   9.C   1 0.A  11.B   12.B

13.  14.  15.    16.3或5

提示:

1.C  ,故它的虛部為.(注意:復數的虛部不是而是)

2.D 解不等式,得,∴,

,故

3.D ,,∴,∴

4.B  兩式相減得,∴,∴

5.C  令,解得,∴

6.C  由已知有解得

7.D   由正態曲線的對稱性和,知,即正態曲線關于直線對稱,于是,,所以

8.B  圓心到直線的距離最小為0,即直線經過圓心,

,∴,∴

9.C  對于A、D,,不是對稱軸;對于B,電不是偶函數;對于C,符合要求.

10.A   設兩個截面圓的圓心分刷為、,公共弦的中點為M,則四邊形為矩形,∴,

11. B  應先求出2人坐進20個座位的排法。排除2人相鄰的情況即可。

共有11+12=23個座位,去掉前排中間3個不能入坐的座位,還有20個座位,則2人坐入20個座位的排法有種,排除①兩人坐前排相鄰的12種情況;②兩人坐后排相鄰的22種情況,∴不同排法的種數有(種).

12.B 拋物線的準線,焦點為,由為直角三角形,知為斜邊,故意,又將代入雙曲線方程得,得,解得,∴離心率為。

13.    展開式中的的系數是,

14.   ,∴

15.   設棱長均為2,由圖知的距離相等,而到平面的距離為,故所成角的正弦值為。

               

                     

                       

                           

               

              

16.3或5    作出可行域(如圖),知在直線上,

    ∴,,在直線中,

    令,得,∴坐標為,∴

    解得或5。

17.解:(1)由,得,…2分

,∵,∴,∴

…………………………………………………………………………4分

,∴………………………………………5分

(2)∵,∴,

……………8分

,∴,∴……………10分

18.解:(1)證明:延長相交于點,連結。

,且,∴的中點,的中點。

的中點,由三角形中位線定理,有

平面,平面,∴平面…………………6分

(2)(法一)由(1)知平面平面。

的中點,∴取的中點,則有。

,∴

平面,∴在平面上的射影,∴

為平面與平面所成二面角的平面角!10分

∵在中,,

,即平面與平面所成二面角的大小為!12分

(法二)如圖,∵平面,

平面,

的中點為坐標原點,以過且平行的直線為軸,所在的直線為 軸,所在的直線為軸,建立空間直角坐標系。

,則,,,,

,

高考資源網
www.ks5u.com為平面的法向量,

   

,可得

又平面的法向量為,設所成的角為,………………… 8分

,

由圖可知平面與平面所成二面角為銳角。

∴平面與平面所成二面角的大小為………………………………12分

19.解:(1)由已知得,∵,∴

     ∵、是方程的兩個根,∴

,…………………………………………6分

(2)的可能取值為0,100,200,300,400

,

,,

的分布列為:

……………………………………………………10分

………………………12分

20.解:(1)∵,∴,∴

又∵,∴數列是首項為1,公比為3的等比數列,。

時,),∴

(2),

時,;

時,,①

①-②得:

又∵也滿足上式:∴……………………12分

21.解:的定義域為……………………………………………………1分

(1)

……………………………………………………3分

時,;當時,;當時,。

從而分別在區間,上單調遞增,在區間上單調遞減

……………………………………………………6分

(2)由(1)知在區間上的最小值為……………8分

,

所以在區間上的最大值為…………………12分

22.解(1)將直線的方程代入,

化簡得

,

同步練習冊答案
久久精品免费一区二区视