解法一:(I)依題意.設橢圓C的方程為 查看更多

 

題目列表(包括答案和解析)

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯立方程組可以得到

,再利用可以結合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

(2012•韶關一模)設拋物線C的方程為x2=4y,M(x0,y0)為直線l:y=-m(m>0)上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(1)當M的坐標為(0,-1)時,求過M,A,B三點的圓的方程,并判斷直線l與此圓的位置關系;
(2)求證:直線AB恒過定點(0,m).

查看答案和解析>>

(2011•延慶縣一模)橢圓C的方程為
x2
9
+
y2
5
=1
,F1、F2分別為C的左、右焦點,點A的坐標為(1,1),P是C上的任意一點,給出下列結論:
①|PF1|-|PF2|有最大值5,②|PF1|•|PF2|有最大值9,③|PF1|2+|PF2|2有最大值18,④|PF1|+|PA|有最小值6-
2
,其中正確結論的序號是
②④
②④

查看答案和解析>>

(2007•河北區一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點F1(-1,0)斜率為1的直線交橢圓于P、Q兩點.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點M,使以橢圓的焦點為焦點且過M點的雙曲線E的實軸最長,求點M的坐標和此雙曲線E的方程.

查看答案和解析>>

(2012•九江一模)設點E、F分別是橢圓C:
x2
a2
y2
b2
=1
(a>b>0)的左、右焦點,過點E垂直于橢圓長軸的直線交橢圓于A、B兩點,△ABF是正三角形.
(1)求橢圓的離心率;
(2)設橢圓C的焦距為2,過點P(3,0)且不與坐標軸重合的直線交橢圓C于M、N兩點,點M關于x軸的對稱點為M',求證:直線M'N過x軸一定點,并求此定點坐標.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视