解:(I)設等比數列的公比為 查看更多

 

題目列表(包括答案和解析)

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
,
ON
=y
OB

(1)求證:x與y的關系為y=
x
x+1

(2)設f(x)=
x
x+1
,定義函數F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函數F(x)的圖象上,且數列{xn}是以首項為1,公比為
1
2
的等比數列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設函數G(x)為R上偶函數,當x∈[0,1]時G(x)=f(x),又函數G(x)圖象關于直線x=1對稱,當方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數解時,求實數a的取值范圍.

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
,
ON
=y
OB

(1)求證:x與y的關系為y=
x
x+1

(2)設f(x)=
x
x+1
,定義函數F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函數F(x)的圖象上,且數列{xn}是以首項為1,公比為
1
2
的等比數列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設函數G(x)為R上偶函數,當x∈[0,1]時G(x)=f(x),又函數G(x)圖象關于直線x=1對稱,當方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數解時,求實數a的取值范圍.

查看答案和解析>>

已知數列是首項為的等比數列,且滿足.

(1)   求常數的值和數列的通項公式;

(2)   若抽去數列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數列,試寫出數列的通項公式;

(3) 在(2)的條件下,設數列的前項和為.是否存在正整數,使得?若存在,試求所有滿足條件的正整數的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數p使得數列為等比數列,

,所以p=1

故數列為首項是2,公比為2的等比數列,即.

此時也滿足,則所求常數的值為1且

第二問中,解:由等比數列的性質得:

(i)當時,

(ii) 當時,,

所以

第三問假設存在正整數n滿足條件,則

則(i)當時,

,

 

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
(1)求證:x與y的關系為;
(2)設,定義函數,點列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函數F(x)的圖象上,且數列{xn}是以首項為1,公比為的等比數列,O為原點,令,是否存在點Q(1,m),使得?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設函數G(x)為R上偶函數,當x∈[0,1]時G(x)=f(x),又函數G(x)圖象關于直線x=1對稱,當方程在x∈[2k,2k+2](k∈N)上有兩個不同的實數解時,求實數a的取值范圍.

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
(1)求證:x與y的關系為
(2)設,定義函數,點列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函數F(x)的圖象上,且數列{xn}是以首項為1,公比為的等比數列,O為原點,令,是否存在點Q(1,m),使得?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設函數G(x)為R上偶函數,當x∈[0,1]時G(x)=f(x),又函數G(x)圖象關于直線x=1對稱,當方程在x∈[2k,2k+2](k∈N)上有兩個不同的實數解時,求實數a的取值范圍.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视