注:寫出的特征向量只要滿足.即可 選修4-4,坐標系與參數方程 本小題主要考查圓的參數方程.直線于圓的位置關系等基礎知識.考查運算求解能力滿分7分解法一: 查看更多

 

題目列表(包括答案和解析)

如圖,在長、寬、高分別為AB=3,AD=2,AA1=1的長方體ABCD-A1B1C1D1的八個頂點的兩點為起點和終點的向量中,
(1)單位向量共有多少個?
(2)試寫出模為的所有向量;
(3)試寫出與相等的所有向量;
(4)試寫出的相反向量.

查看答案和解析>>

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計20分.請在答題卡指定區域內作答,解答時寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數方程)
以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(1,-5),點M的極坐標為(4,
π
2
),若直線l過點P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關于t的參數方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關系.

查看答案和解析>>

精英家教網在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關于x的不等式|x+2|+|x-1|≥a的解集為R,求實數a的取值范圍.

查看答案和解析>>

(2012•徐州模擬)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區域內作答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內切于點T,P是外圓⊙O上任意一點,連PT交⊙O1于點M,PN與內圓⊙O1相切,切點為N.求證:PN:PM為定值.
B.選修4-2:矩陣與變換
已知矩陣M=
21
34

(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量;
C.選修4-2:矩陣與變換
在平面直角坐標系x0y中,求圓C的參數方程為
x=-1+rcosθ
y=rsinθ
為參數r>0),以O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
4
)=2
2
.若直線l與圓C相切,求r的值.
D.選修4-5:不等式選講
已知實數a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
4
3

查看答案和解析>>

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計20分.請在答題卡指定區域內作答,解答時寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數方程)
以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(1,-5),點M的極坐標為(4,
π
2
),若直線l過點P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關于t的參數方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關系.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视