圓內切于.求面積的最小值. 查看更多

 

題目列表(包括答案和解析)

精英家教網半徑為1的球內切于圓錐(直圓錐),已知圓錐母線與底面夾角為2θ.
(1)求證:圓錐的母線與底面半徑的和是
2
tgθ(1-tg2θ)
;
(2)求證:圓錐全面積是
tgθ(1-tg2θ)

(3)當θ是什么值時,圓錐的全面積最小?

查看答案和解析>>

半徑為1的球內切于圓錐(直圓錐),已知圓錐母線與底面夾角為2θ.
(1)求證:圓錐的母線與底面半徑的和是;
(2)求證:圓錐全面積是;
(3)當θ是什么值時,圓錐的全面積最?

查看答案和解析>>

如題15圖,是拋物線上的動點,點軸上,圓內切于,求面積的最小值.

查看答案和解析>>

如題15圖,是拋物線上的動點,點軸上,圓內切于,求面積的最小值.

查看答案和解析>>

(本小題滿分12分)

已知半橢圓和半圓

組成曲線,其中;如圖,半橢圓

內切于矩形

軸于點,點是半圓

異于的任意一點,當點位于點時,

的面積最大.

(Ⅰ)求曲線的方程;

(Ⅱ)連分別于點,求證:為定值.

查看答案和解析>>

一、選擇題

20080527

二、填空題  13.4 ;  14.(-∞,-2]∪[1,+∞); 15. 5  ;   16. ② ③

17.解:(1)由正弦定理得,…

   ,,因此!6分

(2)的面積,

,所以由余弦定理得

!12分

18.18.解:填湖面積   填湖及排水設備費    水面經濟收益   填湖造地后收益

        (畝)      (元)                       

(1)收益不小于支出的條件可以表示為,

所以,。…………………………3分

顯然時,此時所填面積的最大值為畝!7分

(2)設該地現在水面m畝,今年填湖造地y畝,

,…………9分

,所以

因此今年填湖造地面積最多只能占現有水面的!12分

19.(1)∵∠DFH就是二面角G-EF-D的平面角…2分

在Rt△HDF中,DF= PD=1,DH= AD=1   ………4分

∴∠DFH=45°,

即二面角G-EF-D的大小為45°.             …………6分

(2)當點Q是線段PB的中點時,有PQ⊥平面ADQ.…………7分

證明如下:
∵E是PC中點,∴EQ∥BC,又AD∥BC,故EQ∥AD,從而A、D、E、Q四點共面
在Rt△PDC中,PD=DC,E為PC中點
∴PC⊥DE,又∵PD⊥平面ABCD              …………10分
∴AD⊥PC,又AD∩DE=D
∴PC⊥平面ADEQ,即PC⊥平面ADQ.          …………12分
解法二:(1)建立如圖所示空間直角坐標系,設平面GEF的一個法向量為n=(x,y,z),則
  取n=(1,0,1)      …………4分
又平面EFD的法向量為m=(1,0,0)
∴cos<m,n> =                 …………6分
∴<m,n>=45°                            …………7分
(2)設=λ(0<λ<1)
則=+=(-2+2λ,2λ,2-2λ)       …………9分
∵AQ⊥PC ó ?=0  ó  2×2λ-2(2-2λ)=0
ó  λ=                                                …………11分
又AD⊥PC,∴PC⊥平面ADQ  ó λ=

ó  點Q是線段PB的中點.                               …………12分
20。解: 設,不妨設

直線的方程:

化簡得 .又圓心的距離為1,

 ,           …5分

易知,上式化簡得,

同理有.         ………8分

所以,則

是拋物線上的點,有,則

,.                    ………10分

所以

時,上式取等號,此時

因此的最小值為8.                                    …12分

21.(Ⅰ)當.

              …………………3分

(II)     因為在(0,1]上是增函數,

所以在(0,1]上恒成立,即在(0,1]上恒成立,

 令,………6分

在(0,1]上是單調增函數,所以

所以.                                          …………………8分

(Ⅲ)①當時,由(II)知在(0,1]上是增函數,

所以,解得,與矛盾.…………………10分

②當時,令,,

時,,是增函數,

時,,是減函數.

所以,即,

解得,

綜上,存在,使得當時,f(x)有最大值-6.………………12分

22.解:(Ⅰ),,

,是以為首項,為公比的等比數列.

,. ………4分

(Ⅱ)由(Ⅰ)知,

原不等式成立. ………8分

(Ⅲ)由(Ⅱ)知,對任意的,有

. ………10分

, ………12分

原不等式成立.    ………14分

 


同步練習冊答案
久久精品免费一区二区视