[例2]如圖6所示.兩根長為的絕緣細線上端固定在O點.下端各懸掛質量為的帶電小球A.B.A.B帶電分別為..今在水平向左的方向上加勻強電場.場強E.使連接AB長為的絕緣細線拉直.并使兩球處于靜止狀態.問.要使兩小球處于這種狀態.外加電場E的大小為多少? 查看更多

 

題目列表(包括答案和解析)

如圖所示,兩個帶等量同種電荷的圓環穿于水平放置的絕緣光滑圓桿上,兩環通過兩根長度均為0.5m的絕緣細線與m=6.0kg的重物相連,整個系統平衡時兩環間距為0.6m,如圖所示。若不計圓環所受到的重力,求:

【小題1】每根細線的拉力大小
【小題2】每個圓環的帶電量q。
、

查看答案和解析>>

如圖所示,兩個帶等量同種電荷的圓環穿于水平放置的絕緣光滑圓桿上,兩環通過兩根長度均為0.5m的絕緣細線與m=6.0kg的重物相連,整個系統平衡時兩環間距為0.6m,如圖所示。若不計圓環所受到的重力,求:

【小題1】每根細線的拉力大小
【小題2】每個圓環的帶電量q。(、

查看答案和解析>>

第八部分 靜電場

第一講 基本知識介紹

在奧賽考綱中,靜電學知識點數目不算多,總數和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態問題。也就是說,奧賽關注的是電場中更本質的內容,關注的是縱向的深化和而非橫向的綜合。

一、電場強度

1、實驗定律

a、庫侖定律

內容;

條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應用到一般帶電體,非真空介質可以通過介電常數將k進行修正(如果介質分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發點(但這一點又是常常被忽視和被不恰當地“綜合應用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強度

a、電場強度的定義

電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強的計算

決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——

⑴點電荷:E = k

結合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——

⑵均勻帶電環,垂直環面軸線上的某點P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內部:E = 0

外部:E = k ,其中r指考察點到球心的距離

如果球殼是有厚度的的(內徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即

U = 

參考點即電勢為零的點,通常取無窮遠或大地為參考點。

和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點電荷

以無窮遠為參考點,U = k

b、均勻帶電球殼

以無窮遠為參考點,U = k ,U = k

3、電勢的疊加

由于電勢的是標量,所以電勢的疊加服從代數加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導體

靜電感應→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結為以下三層含義——

a、導體內部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。

b、導體是等勢體,表面是等勢面。

c、導體內部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。

2、靜電屏蔽

導體殼(網罩)不接地時,可以實現外部對內部的屏蔽,但不能實現內部對外部的屏蔽;導體殼(網罩)接地后,既可實現外部對內部的屏蔽,也可實現內部對外部的屏蔽。

四、電容

1、電容器

孤立導體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導體的形狀和位置關系、絕緣介質的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(真空中ε0 =  ,其它介質中ε= ),εr則為相對介電常數,εr =  

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯  = +++ … +

b、并聯 C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。

對平行板電容器 E = E2 

認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結論適用于非勻強電場。

五、電介質的極化

1、電介質的極化

a、電介質分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態的H2 、O2 、N2和CO2),后者則反之(如氣態的H2O 、SO2和液態的水硝基笨)

b、電介質的極化:當介質中存在外電場時,無極分子會變為有極分子,有極分子會由原來的雜亂排列變成規則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質左右兩端分別顯現負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質,導體中的原子核和內層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質兩端顯現的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強和電場力

【物理情形1】試證明:均勻帶電球殼內部任意一點的場強均為零。

【模型分析】這是一個疊加原理應用的基本事例。

如圖7-5所示,在球殼內取一點P ,以P為頂點做兩個對頂的、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設球面的電荷面密度為σ,則這兩個面元在P點激發的場強分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關系,引進錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發的合場強為零。

同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發的合場強均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發的場強大小為

ΔE = k ,方向由P指向O點。

無窮多個這樣的面元激發的場強大小和ΔS激發的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?

〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠對稱抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。

【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。

【模型分析】這里涉及兩個知識的應用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內部的結論,即“剝皮法則”),二是填補法。

將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設 = r1 , = r2 ,則大球激發的場強為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發的場強為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。

〖學員思考〗如果在模型2中的OO′連線上O′一側距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢U。

【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環上取一個元段ΔL ,它在P點形成的電勢

ΔU = k

環共有段,各段在P點形成的電勢相同,而且它們是標量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環的總電量Q ,則UP的結論為多少?如果這個總電量的分布不是均勻的,結論會改變嗎?

〖答〗UP =  ;結論不會改變。

〖再思考〗將環換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(包括表面)各點電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內任一點的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂的錐角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內任一點的電勢求解可以從(1)問的求解過程得到結論的反證。

〖答〗(1)球心、球內任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內部不再是等勢體,球面不再是等勢面)。

【相關應用】如圖7-9所示,球形導體空腔內、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現在其內部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。

【解析】由于靜電感應,球殼的內、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。

根據靜電感應的嘗試,內壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內壁的帶電是不均勻的,根據上面的結論,其在球心形成的電勢仍可以應用定式,所以…

【答案】Uo = k - k + k 。

〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應電荷量;(2)外球殼的電勢。

〖解說〗這是一個更為復雜的靜電感應情形,B殼將形成圖示的感應電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應電荷分布都是不均勻的。

此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數和,所以,當我們以球心O點為對象,有

UO = k + k + k = 0

QB應指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應用定式。

基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變為多少?

【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構成環形,故前面的定式不能直接應用。若用元段分割→疊加,也具有相當的困難。所以這里介紹另一種求電勢的方法。

每根細棒的電荷分布雖然復雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設為U2);③bc棒對A、B兩點的貢獻相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 。

〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應該想一點辦法——

我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)

〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。

〖解說〗這又是一個填補法的應用。將半球面補成完整球面,并令右邊內、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。

而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點,UP = k + U半球面

其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ 

以上的兩個關系已經足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?

【模型分析】電勢疊加和關系WAB = q(UA - UB)= qUAB的基本應用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關系即可。

【答案】(1);(2)。 

【相關應用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關系;第(3)問是在前兩問基礎上得出的必然結論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統,而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環境中,我們通常說“兩個點電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。

〖思考〗設三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統放在光滑、絕緣的水平面上,F將其中的一根繩子剪斷,三個球將開始運動起來,試求中間這個小球的最大速度。

〖解〗設剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設2球的速度為v ,1球和3球的速度為v′,則

動量關系 mv + 2m v′= 0

能量關系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 。

三、電場中的導體和電介質

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。

【模型分析】由于靜電感應,A、B兩板的四個平面的電量將呈現一定規律的分布(金屬板雖然很薄,但內部合場強為零的結論還是存在的);這里應注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應用無限大平板的場強定式。

為方便解題,做圖7-15,忽略邊緣效應,四個面的電荷分布應是均勻的,設四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側電量、A板內側電量,B板內側電量?、B板外側電量;(2)A板外側空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側空間場強等于多少?(答:為零。)

〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數為εr的電介質,是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?

〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側受力·(方向相左),內側受力·(方向向右),它們合成即可,結論為F = Q1Q2 ,排斥力。〕

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數為εr的均勻電介質,當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質表面的極化電荷。

【解說】電介質的充入雖然不能改變內表面的電量總數,但由于改變了場強,故對電荷的分布情況肯定有影響。設真空部分電量為Q1 ,介質部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個電容器的并聯,必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 

場強可以根據E = 關系求解,比較常規(上下部分的場強相等)。

上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結論所展示的表象。從內在的角度看,k的改變正是由于極化電荷的出現所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關系是由兩個帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。

〖思考應用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數為εr的均勻電介質,試求與與導體表面接觸的介質表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關計算

【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網絡,試問:(1)在最后一級的右邊并聯一個多大電容C′,可使整個網絡的A、B兩端電容也為C′?(2)不接C′,但無限地增加網絡的級數,整個網絡A、B兩端的總電容是多少?

【模型分析】這是一個練習電容電路簡化基本事例。

第(1)問中,未給出具體級數,一般結論應適用特殊情形:令級數為1 ,于是

 +  =  解C′即可。

第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯也非并聯的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據三個端點之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個考查電容器電路的基本習題,解題的關鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關系:++= 0

電勢關系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應用】如圖7-22所示,由n個單元組成的電容器網絡,每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網絡的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?

【解說】這是一個結合網絡計算和“孤島現象”的典型事例。

(1)類似“物理情形1”的計算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經驗公式為 Uk = 

再算能量儲存就不難了。

(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關系:Q1′= Q3

          Q2′+ Q3′= 

電勢關系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統的儲能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學員思考〗圖7-23展示的過程中,始末狀態的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>

 

典型例題

[1]  解析:對系統進行整體分析,受力分析如圖1―2:

由平衡條件有:

由此解得 

[2]  解析: (1)設t1、t2為聲源S發出兩個信號的時刻,為觀察者接收到兩個信號的時刻.則第一個信號經過時間被觀察者A接收到,第二個信號經過()時刻被觀察者A接收到,且

 

 

 

 

 

 

 

設聲源發出第一個信號時,S、A兩點間的距離為L,兩個聲信號從聲源傳播到觀察者的過程中,它們的運動的距離關系如圖所示,

可得

由以上各式解得

(2)設聲源發出聲波的振動周期為T,這樣,由以上結論,觀察者接收到的聲波振動的周期T′,

由此可得,觀察者接收到的聲波頻率與聲源發出聲波頻率間的關系為

[3] 解答:根據題意作圖1―4.

對這兩個天體而言,它們的運動方程分別為   ①

   ②

以及       ③

由以上三式解得

r1r2的表達式分別代①和②式,

可得

[4]  解答:(1)AB兩球以相同的初速度v0,從同一點水平拋出,可以肯定它們沿同一軌道運動.

作細線剛被拉直時刻A、B球位置示意圖1―5.

根據題意可知:

A球運動時間為t,則B球運動時間為t-0.8,由于A、B球在豎直方向上均作自由落體運動,所以有

由此解得t =1s.

(2)細線剛被拉直時,

A、B球的水平位移分別為

[5]  解答:(1)A球通過最低點時,作用于環形圓管的壓力豎直向下,根據牛頓第三定律,A球受到豎直向上的支持力N1,由牛頓第二定律,有:

     ①

由題意知,A球通過最低點時,B球恰好通過最高點,而且該時刻A、B兩球作用于圓管的合力為零;可見B球作用于圓管的壓力肯定豎直向上,根據牛頓第三定律,圓管對B球的反作用力N2豎直向下;假設B球通過最高點時的速度為v,則B球在該時刻的運動方程為    ②

由題意N1=N2     ③

     ④

B球運用機械能守恒定律     ⑤

解得     ⑥

⑥式代入④式可得:

[6]  解答:火箭上升到最高點的運動分為兩個階段:勻加速上升階段和豎直上拋階段.

地面上的擺鐘對兩個階段的計時為

即總的讀數(計時)為t =t1t2=360(s)

放在火箭中的擺鐘也分兩個階段計時.

第一階段勻加速上升,a=8g,鐘擺周期

其鐘面指示時間

第二階段豎直上拋,為勻減速直線運動,加速度豎直向下,a=g,完全失重,擺鐘不“走”,計時.可見放在火箭中的擺鐘總計時為

綜上所述,火箭中的擺鐘比地面上的擺鐘讀數少了

[7]  解答:在情形(1)中,滑塊相對于桌面以速度v0=0.1m/s向右做勻速運動,放手后,木板由靜止開始向右做勻加速運動.

經時間t,木板的速度增大到v0=0.1m/s,

在5s內滑塊相對于桌面向右的位移大小為S1=v0t=0.5m.

而木板向右相對于桌面的位移為

可見,滑塊在木板上向右只滑行了S1S2=0.25m,即達到相對靜止狀態,隨后,它們一起以共同速度v0向右做勻速直線運動.只要線足夠長,桌上的柱子不阻擋它們運動,滑塊就到不了木板的右端.

在情形(2)中,滑塊與木板組成一個系統,放手后滑塊相樹于木板的速度仍為v0,滑塊到達木板右端歷時

[8]  解答:以m表示球的質量,F表示兩球相互作用的恒定斥力,l表示兩球間的原始距離.A球作初速度為v0的勻減速運動,B球作初速度為零的勻加速運動.在兩球間距由l先減小,到又恢復到l的過程中,A球的運動路程為l1,B球運動路程為l2,間距恢復到l時,A球速度為v1B球速度為v2

由動量守恒,有

由功能關系:A球      B球:

根據題意可知l1=l2,

由上三式可得

v2=v0、v1=0    即兩球交換速度.

當兩球速度相同時,兩球間距最小,設兩球速度相等時的速度為v,

B球的速度由增加到v0花時間t0,即

解二:用牛頓第二定律和運動學公式.(略)

 

跟蹤練習

1.C   提示:利用平衡條件.

2.(1)重物先向下做加速運動,后做減速運動,當重物速度為零時,下降的距離最大,設下降的最大距離為h,

由機械能守恒定律得   解得

(2)系統處于平衡狀態時,兩小環的可能位置為

a.兩小環同時位于大圓環的底端

b.兩小環同時位于大圓環的頂端

c.兩小環一個位于大圓環的頂端,另一個位于大圓環的底端

d.除上述三種情況外,根據對稱性可知,系統如能平衡,則小圓環的位置一定關于大圓環豎直對稱軸對稱.設平衡時,兩小圓環在大圓環豎直對稱軸兩側角的位置上(如圖).

對于重物m,受繩的拉力T與重力mg作用,有T=mg.對于小圓環,受到三個力的作用,水平繩的拉力T,豎直繩的拉力T,大圓環的支持力N.兩繩的拉力沿大圓環切向的分力大小相等,方向相反

3.設測速儀掃描速度為v′,因P1、P2在標尺上對應間隔為30小格,所以格/s.

測速儀發出超聲波信號P1到接收P1的反射信號n1.從圖B上可以看出,測速儀掃描12小格,所以測速儀從發出信號P1到接收其反射信號n1所經歷時間

汽車接收到P1信號時與測速儀相距

同理,測速儀從發出信號P2到接收到其反射信號n2,測速儀掃描9小格,故所經歷時間.汽車在接收到P2信號時與測速儀相距

所以,汽車在接收到P1P2兩個信號的時間內前進的距離△S=S1S2=17m.

從圖B可以看出,n1P2之間有18小格,所以,測速儀從接收反射信號n1到超聲信號P2的時間間隔

所以汽車接收P1、P2兩個信號之間的時間間隔為

∴汽車速度m/s.

4.從B發出第一個超聲波開始計時,經C車接收.故C車第一次接收超聲波時與B距離

第二個超聲波從發出至接收,經T+△T時間,C車第二車接收超聲波時距BC車從接收第一個超聲波到接收第二個超聲波內前進S2S1,接收第一個超聲波時刻,接收第二個超聲波時刻為

所以接收第一和第二個超聲波的時間間距為

故車速.車向右運動.

5.ACD

6.(1)根據動能定理,可求出衛星由近地點到遠地點運動過程中,地球引力對衛星的功為

(2)由牛頓第二定律知   ∴

7.(1)建立如圖所示坐標系,將v0g進行正交分解.

x方向,小球以為初速度作勻加速運動.

y方向,小球以為初速度,作類豎直上拋運動.

y方向的速度為零時,小球離斜面最遠,由運動學公式

小球經時間t上升到最大高度,由

(2)

8.(1)設滑雪者質量為m,斜面與水平面夾角為,滑雪者滑行過程中克服摩擦力做功   ①

由動能定理    ②

離開B點時的速度     ③

(2)設滑雪者離開B點后落在臺階上

可解得 ④         此時必須滿足  ⑤

時,滑雪者直接落到地面上,,

可解得

9.AC

10.擺球先后以正方形的頂點為圓心,半徑分別為R1=4a,R2=3a,R3=2a,R4=a為半徑各作四分之一圓周的圓運動.

當擺球從P點開始,沿半徑R1=4a運動到最低點時的速度v1,

根據動量定理  ①

當擺球開始以v1B點以半徑R2=3a作圓周運動時,擺線拉力最大,為Tmax=7mg,這時擺球的運動方程為        ②

由此求得v0的最大許可值為

當擺球繞C點以半徑R3=2a運動到最高點時,為確保沿圓周運動,

到達最高點時的速度(重力作向心力)

由動能定理

11.B

12.由題意知,周期為.波速

P、Q兩點距離相差次全振動所需時間即

13.ABC  開始時小車上的物體受彈簧水平向右的拉力為6N,水平向左的靜摩擦力也為6N,合力為零.沿水平向右方向對小車施加以作用力,小車向右做加速運動時,車上的物體沿水平向右方向上的合力(F=ma)逐漸增大到8N后恒定.在此過程中向左的靜摩擦力先減小,改變方向后逐漸增大到(向右的)2N而保持恒定;彈簧的拉力(大小、方向)始終沒有變,物體與小車保持相對靜止,小車上的物體不受摩擦力作用時,向右的加速度由彈簧的拉力提供:

14.(1)設物體與板的位移分別為S、S,則由題意有    ①

    ②     解得:

(2)由

,故板與桌面之間的動摩擦因數

15.在0~10s內,物體的加速度(正向)

在10~14s內,物體的加速度 (反向)

由牛頓第二定律    ①              ② 

由此解得F=8.4N    =0.34

16.(1)依題意得=0,設小滑塊在水平面上運動的加速度大小為a,

由牛頓第二定律,,由運動學公式,解得

(2)滑塊在水平面上運動時間為t1,由

在斜面上運動的時間

(3)若滑塊在A點速度為v1=5m/s,則運動到B點的速度

即運動到B點后,小滑塊將做平拋運動.

假設小滑塊不會落到斜面上,則經過落到水平面上,

則水平位移

所以假設正確,即小滑塊從A點運動到地面所需時間為

 

專題二  動量與機械能

 

典型例題

[1]  D

解析:本題辨析一對平衡力和一對作用力和反作用力的功、沖量.因為,一對平衡力大小相等、方向相反,作用在同一物體上,所以,同一段時間內,它們的沖量大小相等、方向相反,故不是相同的沖量,則①錯誤.如果在同一段時間內,一對平衡力做功,要么均為零(靜止),要么大小相等符號相反(正功與負功),故②正確.至于一對作用力與反作用力,雖然兩者大小相等,方向相反,但分別作用在兩個不同物體上(對方物體),所以,即使在同樣時間內,力的作用點的位移不是一定相等的(子彈穿木塊中的一對摩擦力),則做功大小不一定相等.而且作功的正負號也不一定相反(點電荷間相互作用力、磁體間相互作用力的做功,都是同時做正功,或同時做負功.)因此③錯誤,④正確.綜上所述,選項D正確.

【例2】  解析:(1)飛機達到最大速度時牽引力F與其所受阻力f 大小相等,

P=Fv

(2)航空母艦上飛機跑道的最小長度為s,由動能定理得

 將代入上式得

【例3】  解析:解法1(程序法):

選物體為研究對象,在t1時間內其受力情況如圖①所示,選F的方向為正方向,根據牛頓第二定律,物體運動的加速度為

 

 

 

 

 

 

撤去F時物體的速度為v1=a1t1=2×6m/s=12m/s

撤去F后,物體做勻減速運動,其受力情況如圖②所示,根據牛頓第二定律,其運動的加速度為

物體開始碰撞時的速度為v2=v1a2t2=[12+(-2)×2]m/s=8m/s.

再研究物體碰撞的過程,設豎直墻對物體的平均作用力為,其方向水平向左.若選水平向左為正方向,根據動量定理有

解得

解法2(全程考慮):取從物體開始運動到碰撞后反向彈回的全過程應用動量定理,并取F的方向為正方向,則

所以

點評:比較上述兩種方法看出,當物體所受各力的作用時間不相同且間斷作用時,應用動量定理解題對全程列式較簡單,這時定理中的合外力的沖量可理解為整個運動過程中各力沖量的矢量和.此題應用牛頓第二定律和運動學公式較繁瑣.

另外有些變力作用或曲線運動的題目用牛頓定律難以解決,應用動量定理解決可化難為易.

【例4】  解析:該題用守恒觀點和轉化觀點分別解答如下:

解法一:(守恒觀點)選小球為研究對象,設小球沿半徑為R的軌道做勻速圓周運動的線速度為v0,根據牛頓第二定律有   ①

當剪斷兩物體之間的輕線后,輕線對小球的拉力減小,不足以維持小球在半徑為R的軌道上繼續做勻速圓周運動,于是小球沿切線方向逐漸偏離原來的軌道,同時輕線下端的物體m1逐漸上升,且小球的線速度逐漸減小.假設物體m1上升高度為h,小球的線速度減為v時,小球在半徑為(Rh)的軌道上再次做勻速圓周運動,根據牛頓第二定律有      ②

再選小球M、物體m1與地球組所的系統為研究對象,研究兩物體間的輕線剪斷后物體m1上升的過程,由于只有重力做功,所以系統的機械能守恒.選小球做勻速圓周運動的水平面為零勢面,設小球沿半徑為R的軌道做勻速圓周運動時m1到水平板的距離為H,根據機械能守恒定律有    ③

以上三式聯立解得 

解法二:(轉化觀點)與解法一相同,首先列出①②兩式,然后再選小球、物體m1與地球組成的系統為研究對象,研究兩物體間的輕線剪斷后物體m1上升的過程,由于系統的機械能守恒,所以小球動能的減少量等于物體m1重力勢能的增加量.即

     ④

①、②、④式聯立解得 

點評:比較上述兩種解法可以看出,根據機械能守恒定律應用守恒觀點列方程時,需要選零勢面和找出物體與零勢面的高度差,比較麻煩;如果應用轉化觀點列方程,則無需選零勢面,往往顯得簡捷.

【例5】  解析:(1)第一顆子彈射入木塊過程中動量守恒   ①

解得:=3m/s   ②

木塊向右作減速運動加速度m/s2    ③

木塊速度減小為零所用時間      ④

解得t1 =0.6s<1s    ⑤

所以木塊在被第二顆子彈擊中前向右運動離A點最遠時,速度為零,移動距離為

解得s1=0.9m.     ⑥

(2)在第二顆子彈射中木塊前,木塊再向左作加速運動,時間t2=1s-0.6s=0.4s   ⑦

速度增大為v­2=at2=2m/s(恰與傳送帶同速)      ⑧

向左移動的位移為    ⑨

所以兩顆子彈射中木塊的時間間隔內,木塊總位移S0=S1S2=0.5m方向向右     ⑩

第16顆子彈擊中前,木塊向右移動的位移為    11

第16顆子彈擊中后,木塊將會再向右先移動0.9m,總位移為0.9m+7.5=8.4m>8.3m木塊將從B端落下.

所以木塊在傳送帶上最多能被16顆子彈擊中.

(3)第一顆子彈擊穿木塊過程中產生的熱量為

   12

木塊向右減速運動過程中板對傳送帶的位移為    13

產生的熱量為Q2=      14

木塊向左加速運動過程中相對傳送帶的位移為     15

產生的熱量為     16

第16顆子彈射入后木塊滑行時間為t3    17

解得t3=0.4s   18

木塊與傳送帶的相對位移為S=v1­t3+0.8    19

產生的熱量為Q4=   20

全過程中產生的熱量為Q=15(Q1Q2Q­3)+Q1Q4

解得Q=14155.5J    21

【例6】  解析:運動分析:當小車被擋住時,物體落在小車上沿曲面向下滑動,對小車有斜向下方的壓力,由于P的作用小車處于靜止狀態,物體離開小車時速度為v1,最終平拋落地,當去掉擋板,由于物對車的作用,小車將向左加速運動,動能增大,物體相對車滑動的同時,隨車一起向左移動,整個過程機械能守恒,物體滑離小車時的動能將比在前一種情況下小,最終平拋落地,小車同時向前運動,所求距離是物體平拋過程中的水平位移與小車位移的和.求出此種情況下,物體離開車時的速度v2,及此時車的速度以及相應運動的時間是關鍵,由于在物體與小車相互作用過程中水平方向動量守恒這是解決v2、間關系的具體方法.

(1)擋住小車時,求物體滑落時的速度v1,物體從最高點下落至滑離小車時機械能守恒,設車尾部(右端)離地面高為h,則有,     ①

由平拋運動的規律s0=v1t    ②

.    ③

(2)設去掉擋板時物體離開小車時速度為v2,小車速度為,物體從最高點至離開小車之時系統機械能守恒    ④

物體與小車相互作用過程中水平方向動量守恒.   ⑤

此式不僅給出了v2­與大小的關系,同時也說明了v­2是向右的.

物體離開車后對地平拋       ⑥

     ⑦

車在時間內向前的位移    ⑧

比較式⑦、③,得解式①、④、⑤,得

此種情況下落地點距車右端的距離

點評:此題解題過程運用了機械能守恒、動量守恒及平拋運動的知識,另外根據動量守恒判斷m離車時速度的方向及速度間的關系也是特別重要的.

【例7】  解析:(1)設第一次碰墻壁后,平板車向左移動s,速度為0.由于體系總動量向右,平板車速度為零時,滑塊還在向右滑行.

由動能定理    ①

            ②

代入數據得      ③

(3)假如平板車在第二次碰撞前還未和滑塊相對靜止,那么其速度的大小肯定還是2m/s,滑塊的速度則大于2m/s,方向均向右.這樣就違反動量守恒.所以平板車在第二次碰撞前肯定已和滑塊具有共同速度v.此即平板車碰墻前瞬間的速度.

     ④

      ⑤

代入數據得    ⑥

(3)平板車與墻壁第一次碰撞后到滑塊與平板又達到共同速度v前的過程,可用圖(a)(b)(c)表示.(a)為平板車與墻壁撞后瞬間滑塊與平板車的位置,圖(b)為平板車到達最左端時兩者的位置,圖(c)為平板車與滑塊再次達到共同速度為兩者的位置.在此過程中滑塊動能減少等于摩擦力對滑塊所做功,平板車動能減少等于摩擦力對平板車所做功(平板車從BA再回到B的過程中摩擦力做功為零),其中、分別為滑塊和平板車的位移.滑塊和平板車動能總減少為其中為滑塊相對平板車的位移.此后,平板車與墻壁發生多次碰撞,每次情況與此類似,最后停在墻邊.設滑塊相對平板車總位移為l,則有    ⑦

        ⑧

代入數據得      ⑨

l即為平板車的最短長度.

【例8】  解析:本題應用動量守恒,機械能守恒及能量守恒定律聯合求解。

m下落在砂箱砂里的過程中,由于車與小泥球m在水平方向不受任何外力作用,故車及砂、泥球整個系統的水平方向動量守恒,則有:

    ①

此時物塊A由于不受外力作用,繼續向右做勻速直線運動再與輕彈簧相碰,以物塊A、彈簧、車系統為研究對象,水平方向仍未受任何外力作用,系統動量守恒,當彈簧被壓縮到最短,達最大彈性勢能E­p­時,整個系統的速度為v2,則由動量守恒和機械能守恒有:

     ②

    ③

由①②③式聯立解得:     ④

之后物塊A相對地面仍向右做變減速運動,而相對車則向車的左面運動,直到脫離彈簧,獲得對車向左的動能,設剛滑至車尾,則相對車靜止,由能量守恒,彈性勢能轉化為系統克服摩擦力做功轉化的內能有:    ⑤

由④⑤兩式得:  

跟蹤練習

1.【答案】 D

【解析】 在△t1時間內,I1=Ft1=mv=△p1,在△t2時間內.I2=Ft2=2mvmv=mv=△p2  ∴I1=I2

W1<W2,D選項正確.

【說明】 物體在恒定的合外力F作用下做直線運動,由牛頓第二定律可知物體做勻加速直線運動,速度由零增大到v的時間△t2和由v增大到2v的時間△t2是相等的,所以在△t1和△t2的兩段時間內合外力的沖量是相等的.在△t1的平均速度小于△t2時間內的平均速度,從而得出在△t1內的位移小于在△t­2時間的位移,恒力F所做的功W1<W2.D選項正確.

2.【答案】 C

【解析】 無論子彈射入的深度如何,最終子彈和木塊都等速,由動量守恒定律知,兩種情況最終兩木塊(包括子彈)速度都相等.對木塊由動能定理知:兩次子彈對木塊做功一樣多.由動量定理知:兩次木塊所受沖量一樣大.對系統由能的轉化和守恒定律知,兩次損失的機械能一樣多,產生的熱量也一樣多.

3.【解析】 (1)物體由A滑到B的過程中,容器不脫離墻,物塊由B沿球面向上滑時,物塊對容器的作用力有一水平向右的分量,容器將脫離墻向右運動.因此,物塊由AB動量變化量最大,受容器的沖量最大,豎直墻作用于容器的沖量也最大.

物塊由AB機械能守恒,設物塊滑到B的速度為vB,則

    ①

物塊動量變化量方向沿水平方向.容器作用于物塊的沖量為

容器不動,墻對容器的沖量,方向水平向右,這是最大沖量.

(2)物塊從B處上升,容器向右運動過程中,系統水平方向動量守恒.物塊上升到最高處相對容器靜止的時刻,物塊與容器具有共同的水平速度,設它為v,則由動量守恒定律得    ②

系統機械能守恒    ③

聯立①②③式解得   M=3m

4.【解析】 設離子噴出尾噴管時的速度為v,單位時間內噴出n個離子,則△t時間內噴出離子數為nt,由動量定理得

在發射離子過程中,衛星和發射出的離子系統,動量守恒,設噴出離子總質量為△m,則有△mv=(M-△m)v  ∵△mm   ∴v

5.【解析】 (1)設整個過程摩擦力做的功是W,由動能定理得:mghW=0    ①

W=mgh

(2)設物塊沿軌道AB滑動的加速度為a1,

由牛頓第二定律有  ②

設物塊到達B點時的速度為VB,則有VB=a1t1   ③

設物塊沿軌道BC滑動的加速度為a2,由牛頓第二定律有    ④

物塊從B點開始作勻減速運動,到達C點時,速度為零,故有    ⑤

由②③④⑤式可得:    ⑥

(3)使物塊勻速地、緩慢地沿原路回到A點所需做的功應該是克服重力和阻力所做功之和,即是W1=mghW=2mgh

6.【解析】 (1)物體PA下滑經BC過程中根據動能定理:

C點時

根據牛頓第三定律,PC點的壓力

(2)從CE機械能守恒

ED間高度差

(3)物體P最后在B與其等高的圓弧軌道上來回運動時,經C點壓力最小,由BC根據機械能守恒

根據牛頓第三定律  壓力

7.【解析】 物塊的運動可分為以下四個階段:①彈簧彈力做功階段;②離開彈簧后在AB段的勻速直線運動階段;③從BC所進行的變速圓周運動階段;④離開C點后進行的平拋運動階段.彈簧彈力是變化的,求彈簧彈力的功可根據效果――在彈力作用下物塊獲得的機械能,即到達B點的動能求解.物塊從BC克服阻力做的功也是變力,同樣只能根據B點和C點兩點的機械能之差判斷.因此求出物塊在B點和C點的動能是關鍵.可根據題設條件:“進入導軌瞬間對導軌的壓力為其重力的7倍”、“恰能到達C點”,求出

物塊在B點時受力mg和導軌的支持力N=7mg,由牛頓第二定律,

物塊到達C點僅受重力mg,根據牛頓第二定律,有

(1)根據動能定理,可求得彈簧彈力對物體所做的功為W=EkB=3mgR

(2)物體從BC只有重力和阻力做功,根據動能定理,

即物體從BC克服阻力做的功為0.5mgR

(3)物體離開軌道后做平拋運動,僅有重力做功,機械能守恒,

評析:中學階段不要求直接用


同步練習冊答案
久久精品免费一区二区视