法二:MN= == 查看更多

 

題目列表(包括答案和解析)

(2009•浦東新區二模)已知
i
=(1,0),
c
=(0,
2
)
,若過定點A(0,
2
)
、以
i
c
(λ∈R)為法向量的直線l1與過點B(0,-
2
)
c
i
為法向量的直線l2相交于動點P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點E,F,使得|
PE
|+|
PF
|
恒為定值;
(3)在(2)的條件下,若M,N是l:x=2
2
上的兩個動點,且
EM
FN
=0
,試問當|MN|取最小值時,向量
EM
+
FN
EF
是否平行,并說明理由.

查看答案和解析>>

(理)如圖,將∠B=,邊長為1的菱形ABCD沿對角線AC折成大小等于θ的二面角BACD,若θ∈[,],M、N分別為AC、BD的中點,則下面的四種說法:

ACMN;

DM與平面ABC所成的角是θ;

③線段MN的最大值是,最小值是;

④當θ=時,BCAD所成的角等于.

其中正確的說法有    (填上所有正確說法的序號).

 

查看答案和解析>>

(理)如圖,將∠B=,邊長為1的菱形ABCD沿對角線AC折成大小等于θ的二面角BACD,若θ∈[,],M、N分別為AC、BD的中點,則下面的四種說法:

ACMN;
DM與平面ABC所成的角是θ
③線段MN的最大值是,最小值是;
④當θ=時,BCAD所成的角等于.
其中正確的說法有    (填上所有正確說法的序號).

查看答案和解析>>

(理)如圖,將∠B=,邊長為1的菱形ABCD沿對角線AC折成大小等于θ的二面角BACD,若θ∈[,],M、N分別為ACBD的中點,則下面的四種說法:

ACMN;
DM與平面ABC所成的角是θ;
③線段MN的最大值是,最小值是;
④當θ=時,BCAD所成的角等于.
其中正確的說法有    (填上所有正確說法的序號).

查看答案和解析>>

為調查某市學生百米運動成績,從該市學生中按照男女生比例隨機抽取50名學生進行百米測試,學生成績全部都介于13秒到18秒之間,將測試結果按如下方式分成五組,第一組[13,14),第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
性別
是否
達標
合計
達標a=24 b=____________
不達標 c=______d=12______
合計____________n=50
(Ⅰ) 設m,n表示樣本中兩個學生的百米測試成績,已知mn∈[13,14)∪[17,18]求事件“|m-n|>2”的概率;
(Ⅱ) 根據有關規定,成績小于16秒為達標.
如果男女生使用相同的達標標準,則男女生達標情況如附表:
根據上表數據,能否有99%的把握認為“體育達標與性別有關”?若有,你能否提出一個更好的解決方法來?
附:K2=
P(K2≥K)0.0500.0100.001
K3.8416.62510.828


查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视