已知函數處的切線是, 查看更多

 

題目列表(包括答案和解析)

已知函數處取得極值,在x=2處的切線平行于向量

(Ⅰ)求a,b的值;

(Ⅱ)求的單調區間;

(Ⅲ)是否存在正整數m,使得方程在區間(m,m+1)內有且只有兩個不等實根?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

已知函數處取得極小值,其圖象過點A(0,1),且在點A處切線的斜率為—1。

   (Ⅰ)求的解析式;

  (Ⅱ)設函數上的值域也是,則稱區間為函數的“保值區間”。證明:當不存在“保值區間”;

查看答案和解析>>

已知函數f(x)=
13
ax3+2x2,其中a>0
(Ⅰ)當a=3時,求曲線y=f(x)在(1,f(1))處的切線方程;
(Ⅱ) 若函數f(x)在區間(-2,0)上是減函數,求a的取值范圍;
(Ⅲ)若函數y=f(x)在區間[-1,1]上的最小值為-2時,求a的值.

查看答案和解析>>

已知函數f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)試用含有a的式子表示b,并求f(x)的極值;
(Ⅱ)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2),如果在函數圖象上存在點M(x0,y0)(其中x0∈(x1,x2)),使得點M處的切線l∥AB,則稱AB存在“伴隨切線”.特別地,當x0=
x1+x2
2
時,又稱AB存在“中值伴隨切線”.試問:在函數f(x)的圖象上是否存在兩點A、B使得它存在“中值伴隨切線”,若存在,求出A、B的坐標,若不存在,說明理由.

查看答案和解析>>

已知函數f(x)=x3+2bx2+cx-2的圖象在與x軸交點處的切線方程是y=5x-10.
(1)求函數f(x)的解析式;
(2)設函數g(x)=f(x)+
13
mx,若g(x)的極值存在,求實數m的取值范圍以及函數g(x)取得極值時對應的自變量x的值.

查看答案和解析>>

1.C  2.D 3.A  4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B

13.2  14. 15.16.①③④

17.

18.解:

.

⑵在上單調遞增,在上單調遞減.

所以,當時,;當時,.

的值域為.

19.解:⑴直線①,

過原點垂直于的直線方程為

解①②得,

∵橢圓中心O(0,0)關于直線的對稱點在橢圓C的右準線上,

, …………………(分)

∵直線過橢圓焦點,∴該焦點坐標為(2,0),

,

故橢圓C的方程為  ③…………………12分)

20.點評:本小題考查二次函數、等差數列、數列求和、不等式等基礎知識和基本的運算技能,考查分析問題的能力和推理能力。

解:(Ⅰ)設這二次函數f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因為點均在函數的圖像上,所以=3n2-2n.

當n≥2時,an=Sn-Sn-1=(3n2-2n)-

=6n-5.

當n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

(Ⅱ)由(Ⅰ)

得知,

故Tn

(1-

因此,要使(1-)<)成立的m,必須且僅須滿足,即m≥10,所以滿足要求的最小正整數m為10.

21.(1)   

        

   

 (2)由

    令得,增區間為,

減區間為

   

2

 

+

0

0

+

 

    由表可知:當時,

   

        解得:

    的取值范圍為

22.(1)

   (2)

 

 


同步練習冊答案
久久精品免费一区二区视