題目列表(包括答案和解析)
(本題滿分14分)
已知實數,曲線
與直線
的交點為
(異于原點
),在曲線
上取一點
,過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,接著過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,如此下去,可以得到點
,
,…,
,… . 設點
的坐標為
,
.
(Ⅰ)試用表示
,并證明
;
(Ⅱ)試證明,且
(
);
(本題滿分14分)
已知函數圖象上一點
處的切線方程為
.
(Ⅰ)求的值;
(Ⅱ)若方程在
內有兩個不等實根,求
的取值范圍(其中
為自然對數的底數);
(Ⅲ)令,若
的圖象與
軸交于
,
(其中
),
的中點為
,求證:
在
處的導數
.
(本題滿分14分)
已知曲線方程為
,過原點O作曲線
的切線
(1)求的方程;
(2)求曲線,
及
軸圍成的圖形面積S;
(本題滿分14分)
已知中心在原點,對稱軸為坐標軸的橢圓,左焦點,一個頂點坐標為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點
交橢圓于A、B兩點,當△AOB面積最大時,求直線
方程。
(本題滿分14分)
如圖,在直三棱柱中,
,
,求二面角
的大小。
1.C 2.D 3.A 4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B
13.2 14. 15.
16.①③④
17.
18.解:
⑴
.
⑵在上單調遞增,在
上單調遞減.
所以,當時,
;當
時,
.
故的值域為
.
19.解:⑴直線①,
過原點垂直于的直線方程為
②
解①②得,
∵橢圓中心O(0,0)關于直線的對稱點在橢圓C的右準線上,
∴,
…………………(分)
∵直線過橢圓焦點,∴該焦點坐標為(2,0),
∴,
故橢圓C的方程為 ③…………………12分)
20.點評:本小題考查二次函數、等差數列、數列求和、不等式等基礎知識和基本的運算技能,考查分析問題的能力和推理能力。
解:(Ⅰ)設這二次函數f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因為點均在函數
的圖像上,所以
=3n2-2n.
當n≥2時,an=Sn-Sn-1=(3n2-2n)-
=6n-5.
當n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)
得知=
=
,
故Tn==
=(1-
因此,要使(1-
)<
(
)成立的m,必須且僅須滿足
≤
,即m≥10,所以滿足要求的最小正整數m為10.
21.(1)
(2)由
令得,增區間為
和
,
減區間為
2
+
0
-
0
+
↑
↓
↑
由表可知:當時,
解得:
的取值范圍為
22.(1)
(2)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com