(II)設Tn為數列.求m的最小值. 查看更多

 

題目列表(包括答案和解析)

已知定義在(-1,1)上的函數f (x)滿足,且對x,y∈(-1,1)時,有
(I)判斷f(x)在(-1,1)上的奇偶性,并證明之;
(II)令,求數列{f(xn)}的通項公式;
(III)設Tn為數列的前n項和,問是否存在正整數m,使得對任意的n∈N*,有成立?若存在,求出m的最小值;若不存在,則說明理由.

查看答案和解析>>

已知定義在(-1,1)上的函數f (x)滿足f(
1
2
)=1
,且對x,y∈(-1,1)時,有f(x)-f(y)=f(
x-y
1-xy
)

(I)判斷f(x)在(-1,1)上的奇偶性,并證明之;
(II)令x1=
1
2
,xn+1=
2xn
1+
x2n
,求數列{f(xn)}的通項公式;
(III)設Tn為數列{
1
f(xn)
}
的前n項和,問是否存在正整數m,使得對任意的n∈N*,有Tn
m-4
3
成立?若存在,求出m的最小值;若不存在,則說明理由.

查看答案和解析>>

(2006•成都一模)已知定義在(-1,1)上的函數f (x)滿足f(
1
2
)=1
,且對x,y∈(-1,1)時,有f(x)-f(y)=f(
x-y
1-xy
)

(I)判斷f(x)在(-1,1)上的奇偶性,并證明之;
(II)令x1=
1
2
,xn+1=
2xn
1+
x
2
n
,求數列{f(xn)}的通項公式;
(III)設Tn為數列{
1
f(xn)
}
的前n項和,問是否存在正整數m,使得對任意的n∈N*,有Tn
m-4
3
成立?若存在,求出m的最小值;若不存在,則說明理由.

查看答案和解析>>

設數列{an}是公比大小于1的等比數列,Sn為數列{an}的前n項和.已知S3=7,且a1+3,3a2,a3+4構成等差數列.
(I)求數列{an}的通項公式an;
(II)設cn=log2an+1,數列{cncn+2}的前n項和為Tn,是否存在正整數m,使得Tn數學公式對于n∈N*恒成立?若存在,求出m的最小值;若不存在,說明理由.

查看答案和解析>>

設數列{an}是公比大小于1的等比數列,Sn為數列{an}的前n項和.已知S3=7,且a1+3,3a2,a3+4構成等差數列.
(I)求數列{an}的通項公式an;
(II)設cn=log2an+1,數列{cncn+2}的前n項和為Tn,是否存在正整數m,使得Tn對于n∈N*恒成立?若存在,求出m的最小值;若不存在,說明理由.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DBBA    BCBA

二、填空題:本大題共4小題,每小題4分,共16分。

13.2    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應寫出文字說明、證明過程或演算步驟。

17.解:(I)………2分

    依題意函數

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤的萬元;

    本年度每輛車的投入成本為萬元;

    本年度每輛車的出廠價為萬元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤為

   

   (II)本年度的利潤為

   

………………7分

(舍去)。  …………9分

19.(I)解:取CE中點P,連結FP、BP,

∵F為CD的中點,

∴FP//DE,且FP=…………2分

又AB//DE,且AB=

∴AB//FP,且AB=FP,

∴ABPF為平行四邊形,∴AF//BP。…………4分

又∵AF平面BCE,BP平面BCE,

∴AF//平面BCE。 …………6分

   (II)∵△ACD為正三角形,∴AF⊥CD。

∵AB⊥平面ACD,DE//AB,

∴DE⊥平面ACD,又AF平面ACD,

∴DE⊥AF。又AF⊥CD,CD∩DE=D, …………9分

∴AF⊥平面CDE。

又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

∴平面BCE⊥平面CDE。 …………12分

20.解:(I)由題意知

   (II)

          

的最小值為10。 …………12分

21.解:(I)…………1分

   (II)

由條件得 …………3分

  …………4分

   (III)由(II)知

①當時,

②當時,

③當時,

綜上所述:當單調減區間為單調增區間為

 …………12分

22.解:(I)設橢圓的方程為

…………4分

   (II)

…………6分

交橢圓于A,B兩點,

  …………8分

   (3)設直線MA、MB的斜率分別為k1,k2,則問題只需證明

、MB與x軸圍成一個等腰三角形。 …………14分

 

 

 

久久精品免费一区二区视