(II)若函數處的切線斜率為―3.求此切線方程, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數。  (I)求函數的單調區間; (II)函數的圖象的在處切線的斜率為若函數在區間(1,3)上不是單調函數,求m的取值范圍。

查看答案和解析>>

已知函數f(x)=-x3+ax2+b(a,b∈R).
(I)當a>0時,求函數y=f(x)的極值;
(II)若函數y=f(x)的圖象上任意不同的兩點連線的斜率都小于2,求證:-
6
<a<
6
;
(III)對任意x0∈[0,1],y=f(x)的圖象在x=x0處的切線的斜率為k,求證:1≤a≤
3
是|k|≤1成立的充要條件.

查看答案和解析>>

已知函數f(x)=-x3+ax2+b(a,b∈R).
(I)當a>0時,求函數y=f(x)的極值;
(II)若函數y=f(x)的圖象上任意不同的兩點連線的斜率都小于2,求證:-
6
<a<
6
;
(III)對任意x0∈[0,1],y=f(x)的圖象在x=x0處的切線的斜率為k,求證:1≤a≤
3
是|k|≤1成立的充要條件.

查看答案和解析>>

已知函數f(x)=ax2+bx+5,記f(x)的導數為f′(x).
(I)若曲線f(x)在點(1,f(1))處的切線斜率為3,且x=
2
3
時,y=f(x)有極值,求函數f(x)的解析式;
(II)在(I)的條件下,求函數f(x)在[-4,1]上的最大值和最小值;
(III)若關于x的方程f’(x)=0的兩個實數根為α、β,且1<α<β<2試問:是否存在正整數n0,使得|f′(n0)|≤
3
4
?說明理由.

查看答案和解析>>

已知函數f(x)=+ax2+bx+5,記f(x)的導數為f′(x).
(I)若曲線f(x)在點(1,f(1))處的切線斜率為3,且時,y=f(x)有極值,求函數f(x)的解析式;
(II)在(I)的條件下,求函數f(x)在[-4,1]上的最大值和最小值;
(III)若關于x的方程f’(x)=0的兩個實數根為α、β,且1<α<β<2試問:是否存在正整數n,使得?說明理由.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DBBA    BCBA

二、填空題:本大題共4小題,每小題4分,共16分。

13.2    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應寫出文字說明、證明過程或演算步驟。

17.解:(I)………2分

    依題意函數

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤的萬元;

    本年度每輛車的投入成本為萬元;

    本年度每輛車的出廠價為萬元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤為

   

   (II)本年度的利潤為

   

………………7分

(舍去)。  …………9分

19.(I)解:取CE中點P,連結FP、BP,

∵F為CD的中點,

∴FP//DE,且FP=…………2分

又AB//DE,且AB=

∴AB//FP,且AB=FP,

∴ABPF為平行四邊形,∴AF//BP!4分

又∵AF平面BCE,BP平面BCE,

∴AF//平面BCE。 …………6分

   (II)∵△ACD為正三角形,∴AF⊥CD。

∵AB⊥平面ACD,DE//AB,

∴DE⊥平面ACD,又AF平面ACD,

∴DE⊥AF。又AF⊥CD,CD∩DE=D, …………9分

∴AF⊥平面CDE。

又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

∴平面BCE⊥平面CDE。 …………12分

20.解:(I)由題意知

   (II)

          

的最小值為10。 …………12分

21.解:(I)…………1分

   (II)

由條件得 …………3分

  …………4分

   (III)由(II)知

①當時,

②當時,

③當時,

綜上所述:當單調減區間為單調增區間為

 …………12分

22.解:(I)設橢圓的方程為

…………4分

   (II)

…………6分

交橢圓于A,B兩點,

  …………8分

   (3)設直線MA、MB的斜率分別為k1,k2,則問題只需證明

、MB與x軸圍成一個等腰三角形。 …………14分

 

 

 

久久精品免费一区二区视