(2)設.在△中.由正弦定理得.. 查看更多

 

題目列表(包括答案和解析)

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大;

(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數量積和三角函數,以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

如圖,在正四棱錐中,

(1)求該正四棱錐的體積;

(2)設為側棱的中點,求異面直線

所成角的大。

【解析】第一問利用設為底面正方形中心,則為該正四棱錐的高由已知,可求得

所以,

第二問設中點,連結,

可求得,,

中,由余弦定理,得

所以,

 

查看答案和解析>>

如圖,已知平面四邊形中,的中點,,
.將此平面四邊形沿折成直二面角,
連接,設中點為

(1)證明:平面平面;
(2)在線段上是否存在一點,使得平面?若存在,請確定點的位置;若不存在,請說明理由.
(3)求直線與平面所成角的正弦值.

查看答案和解析>>

如圖,已知平面四邊形中,的中點,,
.將此平面四邊形沿折成直二面角
連接,設中點為

(1)證明:平面平面
(2)在線段上是否存在一點,使得平面?若存在,請確定點的位置;若不存在,請說明理由.
(3)求直線與平面所成角的正弦值.

查看答案和解析>>

如圖是單位圓上的點,分別是圓軸的兩交點,為正三角形.

(1)若點坐標為,求的值;

(2)若,四邊形的周長為,試將表示成的函數,并求出的最大值.

【解析】第一問利用設 

∵  A點坐標為∴   ,

(2)中 由條件知  AB=1,CD=2 ,

中,由余弦定理得 

  ∴ 

∵       ∴    ,

∴  當時,即 當 時 , y有最大值5. .

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视